
A Long-Term Investigation of the

Comprehension of OOP Concepts

by Novices

Noa Ragonis* and Mordechai Ben-Ari
Department of Science Teaching, Weizmann Institute of Science, Rehovot 76100, Israel

This article describes research on the learning of object-oriented programming (OOP) by novices.

During two academic years, we taught OOP to high school students, using Java and BlueJ. Our

approach to teaching featured: objects-first, teaching composed classes relatively early, deferring the

teaching of main methods, and focusing on class structure before algorithms. The research used a

constructivist qualitative research methodology using observations and field notes, audio and video

recordings, and an analysis of artifacts such as homework assignments. The findings were divided

into four primary categories: class vs. object, instantiation and constructors, simple vs. composed

classes, and program flow. In total, 58 conceptions and difficulties were identified. Nevertheless, at

the end of the courses, the students understood the basic principles of OOP. The two main

contributions of this research are: (i) the breadth and depth of its investigation into the concepts

held by novices studying OOP, and (ii) the nature of the constructivist qualitative research

methodology.

1. INTRODUCTION

1.1. The Paradigm Issue

There is a virtual consensus that when teaching fundamentals of computer science

the focus should be on scientific principles, problem-solving and project development

skills, rather than on specific artifacts such as languages and operating systems

(Gal-Ezer, Beeri, Harel, & Yehudai, 1995; ACM/IEEE, 2001). However, even if we

emphasize principles, there are a number of significantly different approaches to

program design and implementation that are called paradigms. The difference

between paradigms is in the way the program designer analyzes a given problem, and

in the presentation of the design (Détienne, 2001). There is much disagreement

among computer science (CS) educators concerning the roles of paradigms in

teaching. Studies have dealt with the following topics: What skills are required from

*Corresponding author. Department of Science Teaching, Weizmann Institute of Science, Rehovot

76100, Israel. E-mail: noa.ragonis@weizman.ac.il

Computer Science Education

Vol. 15, No. 3, September 2005, pp. 203 – 221

ISSN 0899-3408 (print)/ISSN 1744-5175 (online)/05/030203-19 � 2005 Taylor & Francis

DOI: 10.1080/08993400500224310

the learners in each paradigm? Should a learner study more than one paradigm? What

paradigm should be taught first? What happens when transferring from one paradigm

to another? (Osborne, 1992; Mazaitis, 1993; Reid, 1993; Brilliant & Wiseman, 1996;

Maheshwari, 1997; Wegner, 1997; Hadjerrouit, 1998a; 1998b; Bergin, 1999; Lewis,

2000; Bucci, Heym, Long, & Weide, 2002).

In recent years, many professional software engineers have come to use the object-

oriented paradigm, and as a result, object-oriented analysis, design and programming

have found their way into computer science education. This presents CS educators

and researchers with a set of dilemmas as to the place of object-oriented programming

(OOP) in the curriculum and a set of challenges to develop suitable pedagogies for

teaching it (Rosson & Alpert, 1990; Brilliant & Wiseman, 1996; Schoenefeld, 1997;

Bishop & Bishop, 2000).

The objective of this research project was to take one particular approach called

objects-first, to teach it to novices, and to study their learning in great depth. We

hoped to answer the following questions: Is objects-first a viable approach for

teaching novices? What are the conceptions that novice students build? What are their

difficulties? What recommendations can be derived concerning ways of teaching

OOP to novices?

1.2. The Research Background

During the past decade, an up-to-date curriculum was developed for teaching

computer science in Israeli high schools (Gal-Ezer, Beeri, Harel, & Yehudai, 1995;

Gal-Ezer & Harel, 1999). A student can study CS for one, three or five units, each

unit consisting of 90 hours (three hours a week for a school year). The first two units,

called ‘‘Foundations of Computer Science,’’ teach algorithms and programming with

the procedural paradigm. For the third unit, the student can elect to study an

application such as graphics or an alternate paradigm such as logic programming.

The fourth unit, called ‘‘Software Design,’’ teaches modularization and basic data

structures such as stacks, lists and trees. The fifth unit is theoretical and includes

alternatives such as automata theory and concurrent programming.

Because of the popularity of the OOP paradigm, we investigated the feasibility of

starting with OOP in the ‘‘Foundations’’ course. Teaching OOP for high school

novices is being done elsewhere (Lattu, Tarhio, & Meisalo, 2000; Schulte & Niere,

2002), including in the U.S. with the decision to change the paradigm and language

of the Advanced Placement examinations (The College Board, 2004). Thus the

methodology and the results of this project should be widely applicable throughout

the CSE community.

2. COURSE DEVELOPMENT

In this section, we describe the learning unit that we developed as part of the project:

the programming language and development environment, the teaching approach,

and the objectives and instructional techniques that we chose.

204 N. Ragonis and M. Ben-Ari

2.1. Choosing a Language and an Environment

Educators and researchers agree that the specific computer language is not the most

important aspect of a course in OOP, as long as it can be used to teach the principles

of OOP (Biddle & Tempro, 1998; Bishop, 1997; Hadjerrouit, 1998b). There are

some comparative studies regarding the language and development environment

most suitable for novices (King, 1997; Kölling, 1999a, 1999b). There are those who

support less common languages such as Smalltalk or languages that were developed

for teaching (Kölling & Rosenberg, 1996b; Fernández & Peña, 2002). However, the

overwhelming majority of educators these days use Java (Biddle & Tempro, 1998;

Bishop, 1997), although the language presents some pedagogical problems (Biddle &

Tempro, 1998; Hadjerrouit, 1998a; Lewis, 2000). We did not stray from this

consensus and chose Java as our programming language. Java is an objects-only

language and thus discourages students from writing procedural programs. In

addition, the language and a plethora of pedagogical tools are available free of charge.

Finally, the CSE community uses Java extensively so that we could benefit from

ongoing development and research of pedagogical tools and techniques.

As the development environment we chose BlueJ (Kölling & Rosenberg, 2000, 2001;

Kölling, Quig, Patterson, & Rosenberg, 2003) because it was designed for teaching.

BlueJ provides all the usual tools for editing, compiling and debugging programs written

in Java, but its significant advantage is the visual presentation of classes and objects, and

its support for interactive invocation of constructors and methods. This enabled us to

demonstrate and exercise the fundamental concepts of OOP at the beginning of the

course without getting bogged down in the details of the programming language. The

subsequent transition to studying the language was easy. The simplicity of BlueJ was a

significant issue. Given the young age of our students, we wanted to be careful not to

inflict upon them the complexities of a professional environment. In the years since this

study was launched, BlueJ has become popular in many academic institutions (Buck &

Stucki, 2000; Kölling & Rosenberg, 2001; Nourie, 2002) and many studies have been

published regarding using it in teaching (Kölling & Rosenberg, 1996a, 2001; Patterson,

Kölling, & Rosenberg, 2003; Kölling, Quig, Patterson, & Rosenberg, 2003; Barnes &

Kölling, 2003; Thramboulidis, 2003). Were we to begin the project today, we would

evaluate other environments such as DrJava and jGrasp (Allen, Cartwright, & Stoler,

2001; Hendrix, Cross, & Barowski, 2004). Although Jeliot is primarily an animation

tool for Java programs, the newest version could also be considered as a development

environment for novices (Ben-Ari, Myller, Sutinen, & Tarhio, 2002).

2.2. Syllabus and Pedagogy

Our central meta-objectives were to have the students come to understand the

following important concepts in OOP: modularity, encapsulation, and information

hiding. Operationally, we wanted the students to be able to approach a problem by

dividing it into classes and implementing the classes in Java. We knew that when

teaching objects-first, there are a large number of elementary concepts that the

Comprehension of OOP Concepts by Novices 205

student must learn together. We can no longer start with a one-line ‘‘Hello world’’

program; instead, classes, objects, methods, fields, parameters, constructors, and so

on must be presented in an integrated fashion. Therefore—and unlike the existing

‘‘Foundations’’ course—we decided to defer the study of algorithms until after the

basic OOP concepts have been thoroughly covered.

Two specific dilemmas pursued us through the project. The first was when and

how to present a composed class, which is the term we use for a class that has fields of a

user-defined class and not just fields of primitive types or predefined types such as

String. We decided—in the interests of better understanding of the paradigm—to

teach composed classes relatively early. We were encouraged in this decision by the

support given by BlueJ for working visually with composed classes. The second

dilemma was when and how to present the main method, since BlueJ enables the

programmer to do significant work without one. Initially, we deferred teaching

the main method, believing that it is too procedural and thus would interfere with the

understanding of the OOP paradigm. Eventually, we came to see that the main

method should not be postponed indefinitely, because that interferes with under-

standing dynamic aspects of the program.

Here is a description of the teaching sequence that developed over time:

. We introduced the concepts of class and object using diagrams.

. Interactive method invocation in BlueJ was used to familiarize the students with

operations on objects.

. Students were then taught to program classes in Java, including attributes (fields),

constructors and methods. The methods included mutators and accessors, and

simple assignments and expressions.

. The complexity of the student activities was gradually increased. First they used

existing classes, then they changed lines in method bodies, then they wrote

methods and only then did they build new classes.

. The next step was building composed classes out of simple classes.

Once these concepts were understood, the syllabus continued with the usual topics:

control statements, arrays and so on.

3. RESEARCH DESIGN

3.1. Rationale

An extensive survey of the literature on teaching OOP showed that the following

subjects have interested researchers: OOP vs. procedural programming, languages,

environments and other tools such as visualizations, teaching approaches and relevant

teaching theories such as constructivism and cognitive apprenticeship.

Researchers who chose the objects-first approach described concepts that need to

be taught and their sequence. The OOP model must be exposed from the beginning

206 N. Ragonis and M. Ben-Ari

by using simple projects that include several classes (Lewis, 2000). In introducing

objects, the following concepts have to be treated: the object state, changing the

object state and the way objects relate to each other (Woodman & Holland, 1996). It

is better to postpone the study of control flow, complex statements and advanced

OOP topics such as inheritance (Stein, 1997). Educators agree that there is need for a

different pedagogical approach for teaching OOP (Bishop, 1997; Bergin, 1999, 2000;

Mitchell, 2001; Neubauer & Strong, 2002), and that there is lack of proven

pedagogical approaches, appropriate books and suitable environments for novices

(Börstler, Johansson, & Nordstrom, 2002; Bucci, Heyn, Long, & Weide, 2002).

Some authors focus on integrating constructivist learning theories into OOP teaching

and learning (Hadjerrouit, 1999; Thramboulidis, 2003). Holland, Griffiths, &

Woodman (1997) gave a detailed list of students’ misconceptions regarding OOP

concepts and suggested a source for each of them. Examples are: equality between a

class and an object; operations used only for computations and not for changing

attributes or for their side-effects such as printing; confusion between an object and a

‘‘name’’ attribute. Fleury (2000) found that students construct their own rules.

Examples are: since two methods in a class cannot have the same signature, students

assumed that this rule holds also for methods in different classes; they also thought

that object creation relates only to executing the constructor method and not to

allocating memory.

Researchers claim that high cognitive demands are required from learners of OOP:

abstraction, analysis, design, analogy, and more (Hadjerrouit, 1998a, 1998b, 1999;

Parlante, 1997; Woodman, Davies, & Holland, 1996). Détienne (2001) dedicated an

entire book to the cognitive aspects of software design in the OOP environment. Her

emphasis is on abstraction dimensions especially those that relate to beginners, such

as mapping from the problem domain to the programming domain.

Most of the previous studies on OOP described a single lecturer/investigator who

gave a course on the topic, and determined the contents of the course and the order of

their presentation. The studies reported the problems that arose while teaching the

course, and suggestions for improvements. Other studies were based on a single

questionnaire, which aimed to examine specific concepts, or to do a comparison

between novices and experts, or between programmers in different paradigms. We

did not find any publications that reported a long and formal research project on

teaching OOP. There was a noticeable absence of research projects dealing with

young novices such as high school students, though recently a report has been

published describing a three-year research project in progress at Oslo University

(Berge, Fjuk, Groven, Hwgna, & Kaasbøll, 2003).

3.2. Research Questions

The research questions were formally posed as follows:

1. What key concepts of OOP are important and can be included in an introductory

course?

Comprehension of OOP Concepts by Novices 207

2. What conceptions do novice students build when learning fundamental concepts

of OOP?

3. What is a suitable teaching sequence for teaching OOP to novices?

3.3. Population and Implementation

During the academic year 2000 – 2001, we taught a two-hour per week class

(approximately 50 total hours of teaching) in OOP to 18 novices studying CS in the

tenth grade (ages 15 – 16). We repeated the course during 2001 – 2002 with a class of

29 students.1 In each meeting, one hour was dedicated to lectures and discussion in

the classroom, and the other to demonstrations and exercises in a computer lab.

Lectures were given by the second author while the first author observed and took

comprehensive field notes. Additional data gathered included all the homework, lab

exercises, tests and projects. See Ragonis (2004) for a complete analysis of the data.

The experimental setup was slightly less than optimal because the students

continued to study the procedural ‘‘Foundations’’ course as required by the national

curriculum. Furthermore, the OOP course was defined as part of the students’

‘‘enrichment lessons,’’ so the students did not feel the same commitment to

performing the tasks we required as they did in their required courses. Despite these

problems, we were more than satisfied with the amount and quality of the research

material gathered. We grew to know the students, the students got to know us, the

topic and our demands, and the length of the experiment meant that any local crises

did not affect the long-term quality of learning and research.

4. RESEARCH METHODOLOGY

This research used a constructivist qualitative research methodology, based upon

constructivist learning theories that relate to reality as a human structure, formed by the

cultural and personal conditions of the researcher and her research population (Sabar

Ben-Yehoshua, 2001). This study presents a series of meetings between a world of

understandings of the researcher and the perception of reality by the population under

investigation. The understandings and perceptions of the researcher compared with the

understandings and perceptions of the students affected and changed each other. The

process is that of a participating observer who is an investigator involved in the field she

researches, and where she constitutes part of this field (Hazan, 2001). According to this

approach, the researcher is conscious of the field, conscious of herself, affects reality, but

also creates it (Phillips, 1990). The voice of the researcher is present throughout the

research work. The researcher does not come into the research field tabula rasa, but

possesses previous attitudes regarding the field of study (Hammersley, 1995). The

experience of the researcher affects her development, views and attitudes (Ely, Vinz,

Downing, & Anzul, 1997). This was true in our case because of our extensive experience

in CS education, as teachers, as developers of learning materials and as researchers.

The characteristics of this study were similar to those of action research, in which the

researcher is versed in her subject matter, locates or feels a problem and tries to

208 N. Ragonis and M. Ben-Ari

identify and solve the problem (Shkedi, 2003). The entire process is documented and

described, and in the end an evaluation is made as to whether the objective was

attained. When the investigated phenomenon is complex, there is a significant

advantage to a researcher who experiences it from the inside and can describe it from

a point of view close to that of the students.

It is important to note that the processes and understandings that took place in the

students are the heart of the study rather than their achievements. Quantitative

measures of achievement were used only sparingly to support the qualitative findings.

Extensive data collection was carried out through the entire period: observations

and field notes, audio and video recordings, and collection of artifacts. The latter—

homework assignments, class work, examinations, final project—proved to be

especially fruitful in that they showed precisely what concepts were understood and

what concepts were problematical.

On-the-fly analysis of the results of the first year of teaching enabled us to draw

important conclusions and led to changes in the syllabus and pedagogy used in the

second year. Some of those conclusions were:

. Classes and objects should be introduced first using diagrams.

. There is a need to use algorithms that are well-suited to the paradigm.

. Examples using graphics should be avoided because novice students conflated the

‘‘object’’ with its rendering on the screen (and when using BlueJ with its icon in

the environment).

. Problems relating to computer systems should be used, not just ‘‘real-life’’

problems involving employees and animals.

. Problems that use loops do not naturally appear within the context of elementary

OOP, so the topic should be deferred and taught together with array objects.

The importance of the first year lay in confirming our basic assumption that the OOP

paradigm can be taught to young novices, although issues of syllabus and pedagogy

are critical to successful learning.

5. RESULTS AND DISCUSSION

5.1. Data Analysis and Presentation

The amount of data collected was massive. To make sense of so much data, the

analysis was performed as follows: first, the questionnaires, tests and homework were

reviewed to extract interesting episodes. These were then formally analyzed, using the

field notes to provide the context and clarifications needed to understand the episodes.

The analysis was done in several phases using various modes of presentation:

1. The analysis from the first year was summarized in a ‘‘research narrative,’’

describing in detail the course of teaching and the research results. This analysis

was used as the basis for preparing the instruction during the second year.

Comprehension of OOP Concepts by Novices 209

2. A concept map for OOP was built to serve as a reference against which all

subsequent analysis was conducted.

3. Significant episodes were identified and characterized according to the OOP

concept involved. Episodes were significant, not only when they showed

difficulties and errors shown by the students, but also when they showed evidence

of comprehension of a concept. We were not just cataloguing misconceptions, but

trying to understand what made for effective learning!

4. Episodes were assigned to one or more categories of OOP concepts. As needed,

sub-categories of concepts were created in each category.

5. The categories and sub-categories were structured into a tree. We chose four

categories that were found to be significant and that seemed to be sufficient to

provide answers to the research questions. We chose categories that: (i) related to

main OOP concepts, (ii) affected comprehension and perception of the

discipline, and (iii) contained many important findings. We dropped categories

concerning the programming language since language per se was not significant

in this learning unit.

6. The four categories that we chose were: class vs. object, instantiation and constructors,

simple vs. composed classes, program flow. The categorization of episodes was

validated by two independent teachers.

The presentation of the findings was structured as follows. For each category there

were four paragraphs:

. Introduction: A description of the concepts included in the category, an overview

of previous studies, and the details of the teaching principles.

. Findings: A qualitative analysis of the difficulties and erroneous perceptions,

divided into sub-categories, a quantitative analysis (where available), examples

for improving the pedagogy, and an analysis of attitudes at the end of the

course.

. Discussion: A summary table of all the categories, sub-categories, and

conceptions, a comparison of the findings with findings of other studies, and a

discussion of the effect of using BlueJ on learning these concepts.

. Recommendations and teaching dilemmas.

For a subcategory, each difficulty or erroneous conception is presented by a

definition and a short description of the problem, followed by a table of episodes. An

episode might be taken from a discussion in the class, an answer to a questionnaire, or

a solution of a homework exercise. An episode is described by: (i) the situation in

which it occurred, (ii) a description of what had taken place, (iii) when it occurred,

and (iv) a code for the name of the student involved. Since the episodes come from a

large variety of examples and exercises, we used a running example to demonstrate

each problem; this enables the reader of the research presentation to understand the

description of the difficulties and misconceptions without detailed knowledge of the

wealth of material used in the course.

210 N. Ragonis and M. Ben-Ari

5.2. Categories of Student Understanding of OOP Concepts

This section presents the full list of the categories and sub-categories that we found

(Ragonis, 2004). For each sub-category we also give the list of difficulties and

misconceptions comprising it. Although space prevents a full discussion of each one,

we believe that instructors with experience teaching OOP will be able to relate to them.

Category 1 — Object vs. Class

It is essential that students understand the relationship between a class and objects of

the class. A class is a template from which objects can be created, but to find the fields

and methods of an object you must look at the text of the class.

Subcategory 1.1: The nature of a class as a template.

1.1.1 Difficulties in understanding the static aspect of the class definition.

1.1.2 Difficulties in understanding that a method can be invoked on any object of

the class.

1.1.3 Misconception: You can define a method that doesn’t access any attribute.

1.1.4 Misconception: You can define a method that adds an attribute to the class.

1.1.5 Difficulties in understanding the classification of methods that we used

(constructors, mutators, accessors, ‘‘others’’).

1.1.6 Misconception: You can invoke a method on an object only once.

Subcategory 1.2: Connections between objects and classes.

1.2.1 Misconception: A class is a collection of objects, rather than a template for

creating objects.

1.2.2 Misconception: You can define a non-constructor method to create a new

object.

1.2.3 Misconception: You can define a method that replaces the object itself.

1.2.4 Misconception: You can define a method that destroys the object itself.

1.2.5 Misconception: You can define a method that divides the object into two

different objects.

Subcategory 1.3: Object creation.

1.3.1 Difficulties in understanding the process of creating an object.2

Subcategory 1.4: Identification of objects.

1.4.1 Misconception: Two objects of the same class cannot have equal values for

their attributes.

1.4.2 Misconception: Two objects can have the same identifier if there is any

difference in the values of their attributes.

Comprehension of OOP Concepts by Novices 211

1.4.3 Misconception: An attribute value can be used as the object identifier.

1.4.4 Misconception: The object identifier is one of the object’s attributes.

1.4.5 Difficulties recognizing an object due to multiple representations (the set of

values of attributes, the BlueJ icon and the graphical rendering).

Category 2 — Instantiation and Constructors

Instantiation is the process by which an object is created from a class: memory

allocation and execution of the constructor. Students must understand these both

conceptually and in terms of the constructs in the programming language.

Subcategory 2.1: General understanding of instantiation.

2.1.1 Misconception: There is no need to invoke the constructor method, because

its definition is sufficient for object creation.

2.1.2 Misconception: Constructors can include only assignment statements to

initialize attributes.

2.1.3 Misconception: Instantiation involves only the execution of the constructor

method body, not the allocation of memory.

2.1.4 Misconception: Invocation of the constructor method can replace its

definition.

Subcategory 2.2: Understanding instantiation in a composed class.

2.2.1 Misconception: If objects of the simple class already exist, there is no need to

create the object of the composed class.

2.2.2 Misconception: Creation of an object of a composed class automatically

creates objects of the simple class that appear as attributes of the composed

class.

2.2.3 Difficulties in understanding where objects of the simple class are created,

before the creation of the object of the composed class.

Subcategory 2.3: Understanding instantiation is affected by its implementa-

tion in the programming language.

2.3.1 Difficulties understanding the empty constructor.

2.3.2 Difficulties understanding objects if their attributes are not explicitly

initialized.

2.3.3 Initializing an attribute with a constant as part of its declaration causes

confusion in distinguishing between a class and an object.

2.3.4 Initializing an attribute with a constant within the constructor declaration

causes confusion in distinguishing between a class and an object.

2.3.5 Misconception: If the attributes are initialized in the class declaration there is

no need to create objects.

212 N. Ragonis and M. Ben-Ari

Category 3 — Simple vs. Composed Classes

Students showed difficulties in understanding a core concept of OOP, defining

classes that contain attributes of other classes.

Subcategory 3.1: Understanding encapsulation.

3.1.1 Misconception: An object cannot be the value of an attribute.

3.1.2 Misconception: The attributes of the composed class include all the attributes

of the objects of a simple class, instead of the objects themselves.

3.1.3 Misconception: The attributes of the composed class include all the

attributes of the objects of a simple class, in addition to the objects

themselves.

3.1.4 Misconception: Methods that are declared in the simple class have to be

declared again in the composed class for each of the simple objects.

3.1.5 Misconception: There is no need for mutators and accessors for attributes

that are of the simple class within the composed class.

3.1.6 Misconception: To change the value of an attribute of an object of a simple

class that is the value of an attribute in an object of a composed class, you need

to construct a new object.

3.1.7 Misconception: Methods can only be invoked on objects of the composed

class, not on objects of the simple class defined as values in its attributes.

Subcategory 3.2: Understanding modularity.

3.2.1 Misconception: After a composed class is defined, new methods cannot be

defined in the simple class.

3.2.2 Methods from the simple class are not used; instead, new equivalent methods

are defined and duplicated in the composed class.

3.2.3 Methods in different classes are not distinguished if they have the same

signature.

Subcategory 3.3: The class as a collection of objects.

3.3.1 Misconception: Objects of a simple class, used as values of the attributes of a

composed class, have to be identical.

3.3.2 Misconception: In a composed class you can develop a method that adds an

attribute of a simple class to the composed class.

3.3.3 Misconception: In a composed class you can develop a method that removes

an attribute of a simple class from the composed class.

Subcategory 3.4: Understanding information hiding.

3.4.1 Misconception: Attributes of the simple class must be directly accessed from

the composed class instead of through an interface.

Comprehension of OOP Concepts by Novices 213

Subcategory 3.5: Personification.

3.5.1 Misconception: Attributes in a simple class are automatically replicated in the

composed class by transferring its meaning.

Subcategory 3.6: Understanding invocation on the implicit object.

3.6.1 Misconception: A method must always be invoked on an explicit object. (We

did not teach the use of an explicit ‘‘this,’’ so the students invented an

imaginary object upon which to invoke the method.)

Category 4 — Program Flow

Students found it hard to create a general picture of the execution of a program that

solves a problem. We found students asking questions of the form: What actions are

carried out? When are they carried out? What triggers the action? What is the order of

execution of actions?

Subcategory 4.1: Understanding executions of methods.

4.1.1 Misconception: Methods are executed according to their order in the class

definition.

4.1.2 Misconception: Every method can be invoked only once.3

4.1.3 Difficulties distinguishing when there is a need to explicitly write the identifier

of the object.

4.1.4 Difficulties understanding the influence of method execution on the object

state.

4.1.5 Difficulties understanding the invocation of a method from another method.

Subcategory 4.2: Understanding data flow.

4.2.1 Where do the values of the parameters come from?

4.2.2 To where does the return value of a method go?

Subcategory 4.3: Things happen with no cause.

4.3.1 Misconception: Objects are created by themselves.

4.3.2 Misconception: Attributes values are updated automatically according to a

logical context.

4.3.3 Misconception: The system does not allow unreasonable operations.

Subcategory 4.4: ‘‘How does the computer know?’’

4.4.1 How does the computer know what the class attributes and methods are?

4.4.2 How does one class recognize another?

214 N. Ragonis and M. Ben-Ari

Subcategory 4.5: Difficulties in understanding the overall flow of execution:

What happens and when?

5.3. An Example Problem and its Table of Episodes

Since the entire set of results is too long for an article, we give one example taken

from category 3 to show the form and content of a typical result and the type of

episodes from which it was derived.

Category 3 — Simple vs. Composed Classes

Students showed difficulties in understanding the definition of classes that contain

attributes of other classes.

Subcategory 3.3: The class as a collection of objects.

A composed class may be perceived as a collection of objects of the type of a

simple class, rather than as a class that just happens to have some of its fields of the

type.4

3.3.2 Misconception: Students conclude that a method can be defined to add an

attribute of the simple class to the composed class.

This subcategory and misconception are presented first using our running example

and then giving authentic episodes from which the result was deduced (Figure 1).

The running example was a class Disc which had three attributes song1, song2 and

song3 of type Song. Each episode consists of an example or exercise given in class or as

homework, the answer given by the student (together with an identification of its

source) and followed by our interpretation of the answer as demonstrating the

problem or misconception.

5.4. Recommendations for Teaching

The research conclusions suggested guidelines for teaching and a recommended

syllabus for teaching OOP to novices. This section presents some of these guidelines:

. Although constructors are difficult to understand, it is better to ‘‘bite the bullet’’

and teach them relatively early. Constructors are at the heart of OOP and are

executed in any case, so ignoring them will cause more difficulties than it will

solve. We found it preferable to use a full constructor—assigning initial values to

each attribute—rather than a simpler constructor based upon default or constant

values (Ragonis & Ben-Ari, 2002). Teachers must explicitly explain that there are

two steps in the instantiation of an object: allocating memory and then invoking

the body of the constructor.

. Objects are a complex concept: they are created, they have an identity and

methods can be invoked on them. It is important to relate objects to their

Comprehension of OOP Concepts by Novices 215

identities and states all the time, paying particular attention to changes in state

during execution.

. A composed class must include attributes of different types to avoid the

misconception that a composed class is just a collection of identical objects, and

also to emphasize the need to create objects of the composed class, even though

the simple objects have already been created.

. The instructor must integrate the teaching of the concept of program flow into the

classical OOP concepts of encapsulation, modularity and data hiding.

Figure 1. A misconception and its episodes.

216 N. Ragonis and M. Ben-Ari

. Problem solving must also be emphasized in order to create an appropriate

context for OOP problems, rather than focusing just on entities in the target

system.

. An appropriate place (relatively early in the syllabus) must be found for teaching

the main method. We believe that this would help in understanding concepts such

as object creation and identification, the need for mutators and accessors, and

understanding a self invocation. Furthermore, it will enable students to first

understand encapsulation in a simple class before encountering composed

classes. Study of the main method will also help students internalize issues of

control and data flow.

5.5. Contributions of the Research

This research has made two primary methodological contributions:

First, it is unprecedented in the length and breadth of its investigation into the

concepts of novices studying OOP. The four main categories were divided into

eighteen sub-categories, and include 58 conceptions and difficulties. This detail of

analysis, together with an integrated view, gives educators a source of data which

can inform the development of syllabi for OOP and engender a much better

understanding of students’ difficulties by their teachers. Once a teacher is aware of

the potential difficulties, she can plan her teaching approach accordingly.

The second contribution is the use of the constructivist qualitative research

methodology. The research employed a wide variety of tools that gave a rich picture of

students’ understanding and the difficulties they encountered over the long period of

the teaching-learning process. Each issue could be checked from different points of

view and in a range of situations. It also ensured the validity of the research results.

The categories and sub-categories were not just a background to a narrative

description; rather, the detailed classification was supported with authentic episodes

which can be verified. Similar episodes are likely to appear in the teaching of other

instructors.

The use of a running example is a novel way of documenting research results. This

enables the reader to study the details of the various conceptions and difficulties

without needing to absorb the entire set of exercises the students carried out.

6. CONCLUSION

This article presents an overview of a research project on teaching OOP to novices.

The emphasis is on the theoretical background, the research methodology, the

analysis technique and the mode of presentation of the findings.

From an examination of students’ understanding at the end of the teaching

process, we found that important principles of OOP such as encapsulation, modu-

larity and data hiding were understood. In the summary questionnaire, all the

students correctly explained the objective of instantiation, explained the process

involved in its activation and also implemented the creation of a new composed

Comprehension of OOP Concepts by Novices 217

object in Java. They also demonstrated an almost perfect capability to classify

methods to the appropriate (simple, composed or main) class. Their explanations

used the appropriate OOP terms. Students also demonstrated an understanding of

program flow through description, analysis and expansion of the main method

defined in the project, including a detailed description of the process scenario that

results from executing the main method. In a stand points questionnaire filled out

before the final project, we saw that they no longer considered most of the concepts to

be difficult, although three concepts remained so: composed classes, the main

program, and mutator and accessor methods. The success of the final projects as

measured by criteria of OOP principles was very high.

This study showed that it is possible to teach OOP to high school novices. The

success of the students in planning and implementing a final project (as well as other

findings) confirms this claim. We learned that the order in which concepts are

presented is extremely important. The difficulties described do not mean that

teaching OOP is inappropriate for novices. Most of them appeared with low

frequency and characterized a particular period of learning, disappearing as the

course progressed. Teachers, as well as developers of learning materials, should be

aware of the large number of conceptions and difficulties that were found, so that they

can improve the process of teaching and learning OOP.

ACKNOWLEDGEMENT

We wish to express our gratitude to the Gan-Nahum Gymnasia high school in Rishon

leZion that enabled us to carry out this extensive research project, and in particular to

the students who cooperated with our ever-changing ideas on how to teach OOP. We

also thank the reviewers and editors for their helpful comments and suggestions.

NOTES

1. The first author also taught similar material to students at a teachers’ college, but

the analyses of the results from these classes were not directly used in this research.

2. This subcategory is further expanded in Category 2.

3. This appeared in item 1.1.6 in the context of a class declaration, while here it

appears in the context of program flow.

4. We were careful to define a class as a type (template) from which objects can be

created and not as a collection of (existing) objects.

NOTES ON CONTRIBUTORS

Noa Ragonis recently received her Ph.D. degree in science teaching from the Weizmann

Institute of Science. She has taught computer science for twenty years, first in high

schools and now at the Beit Berl College, where she is currently head of the computer

science track at the department of education. She has written three high-school computer

science textbooks (in Hebrew), including a pioneering course on expert systems.

218 N. Ragonis and M. Ben-Ari

Mordechai Ben-Ari is an associate professor in the Department of Science

Teaching of the Weizmann Institute of Science, where he heads a group that develops

courses in computer science for high school students. He holds a Ph.D. in

mathematics and computer science from the Tel Aviv University. In 2004, he

received the ACM/SIGCSE Award for Outstanding Contributions to Computer

Science Education. He is the author of six textbooks on concurrent computation,

programming languages and mathematical logic, most recently ‘‘Mathematical Logic

for Computer Science (Second Edition)’’ published by Springer-Verlag London. His

research interests include the use of visualization in teaching computer science, the

pedagogy of concurrent and distributed computation, and the application of theories

of education to computer science education.

REFERENCES

ACM/IEEE (2001). Computing curricula 2001. Journal on Educational Resources in Computing, 1(3),

article No.1.

Allen, E., Cartwright, R., & Stoler, B. (2001). DrJava: A lightweight pedagogic environment for

Java. ACM SIGCSE Bulletin, 34(1), 137 – 141.

Barnes, D.J., & Kölling, M. (2003). Objects First with Java - A Practical Introduction using BlueJ. New

Jersey: Pearson Education.

Ben-Ari, M., Myller, N., Sutinen, E., & Tarhio, J. (2002). Perspectives on program animation

with Jeliot. In S. Diehl (Ed.), Software Visualization. Lecture Notes in Computer Science

2269, 31 – 45.

Berge, O., Fjuk, A., Groven, A., Hwgna, H., & Kaasbøll, J. (2003). Comprehensive object-oriented

learning – An introduction. Computer Science Education, 13(4), 331 – 335.

Bergin, J. (1999). Why procedural is the wrong first paradigm if OOP is the goal. Presented at

OOPSLA99 Educator’s Symposium. Retrieved October 30 2004 from http://csis.pace.edu/

*bergin/papers/Whynotproceduralfirst.html

Bergin, J. (2000). Teaching objects with elementary patterns. Retrieved October 30 2004 from

http://csis.pace.edu/*bergin/patterns/Whynotproceduralfirst.html

Biddle, R., & Tempro, E. (1998). Java pitfalls for beginners. ACM SIGCSE Bulletin, 30(2), 48 – 52.

Bishop, J.M. (1997). A philosophy of teaching Java as a first teaching language. ACM SIGCSE

Bulletin, 29(1), 140 – 142.

Bishop, J.M., & Bishop, N. (2000). Object-orientation in Java for scientific programmers. ACM

SIGCSE Bulletin, 32(1), 357 – 361.

Börstler, J., Johansson, T., & Nordstrom, M. (2002). Teaching OO concepts – A case study using

CRC-Cards and BlueJ. Proceedings of ASEE/IEEE Frontiers in Education Conference, FIE2002,

T2G1-6, Boston, MA.

Brilliant, S.S., & Wiseman, T.R. (1996). The first programming paradigm and language dilemma.

ACM SIGCSE Bulletin, 28(1), 338 – 342.

Bucci, P., Heym, W., Long, T.J., & Weide, B.W. (2002). Algorithms and object-oriented

programming: Bridging the gap. ACM SIGCSE Bulletin, 34(1), 302 – 306.

Buck, D., & Stucki, D.J. (2000). Design early considered harmful: Graduated exposure to

complexity and structure based on levels of cognitive development. ACM SIGCSE Bulletin,

32(1), 75 – 79.

Détienne, F. (2001). Software Design – Cognitive Aspects. London: Springer.

Ely, M., Vinz, R., Downing, M., & Anzul, M. (1997). On Writing Qualitative Research: Living by

Words. London: Falmer.

Comprehension of OOP Concepts by Novices 219

Fernández, L., & Peña, M.R. (2002). PIIPOO: An adaptive language to learn OO Programming.

Presented at Workshop on Pedagogies and Tools for Learning Object-Oriented Concepts ECOOP2002,

Málaga, Spain. Retrieved October 30 2004 http://prog.vub.ac.be/ecoop2002/ws03/acc_papers/

L_Fernandez_Munoz.pdf

Fleury, A.E. (2000). Programming in Java: Student-constructed rules. SIGCSE Bulletin, 32(1),

197 – 201.

Gal-Ezer, J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high-school program in computer

science. IEEE Computer, 28(10), 73 – 80.

Gal-Ezer, J., & Harel, D. (1999). Curriculum and course syllabi for a high-school CS program.

Computer Science Education, 9(2), 114 – 147.

Hadjerrouit, S. (1998a). Java as first programming language: A critical evaluation. ACM SIGCSE

Bulletin, 30(2), 43 – 47.

Hadjerrouit, S. (1998b). A constructivist framework for integrating the Java paradigm into the

undergraduate curriculum. ACM SIGCSE Bulletin, 30(3), 105 – 107.

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and programming.

ACM SIGCSE Bulletin, 31(3), 171 – 174.

Hammersley, M. (1995). The politics of social research. Thousand Oaks, CA: Sage.

Hazan, H. (2001). The other voice: On the qualitative research sound. In N. Sabar (Ed.),

Qualitative Research: Genres and Traditions in Qualitative Research (pp. 9 – 12), Tel-Aviv, Israel:

Zmora Bitan (in Hebrew).

Hendrix, T.D., Cross, J.H., & Barowski, L.A. (2004). An extensible framework for providing

dynamic data structure visualizations in a lightweight IDE. ACM SIGCSE Bulletin, 36(1),

387 – 391.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. ACM

SIGCSE Bulletin, 29(1), 131 – 134.

King, K.N. (1997). The case for Java as a first language. Proceedings of the Annual ACM Southeast

Conference, Murfreesboro, Tenn., 124 – 131.

Kölling, M. (1999a). The problem of teaching object-oriented programming, Part I: Languages.

Journal of Object-oriented Programming, 11(8), 8 – 15.

Kölling, M. (1999b). The problem of teaching object-oriented programming, Part II: Environ-

ments. Journal of Object-oriented Programming, 11(9), 6 – 12.

Kölling, M., & Rosenberg, J. (1996a). An object-oriented program development environment for

the first programming course. ACM SIGCSE Bulletin, 28(1), 83 – 87.

Kölling, M., & Rosenberg, J. (1996b). Blue - a language for teaching object-oriented programming.

ACM SIGCSE Bulletin, 28(1), 190 – 194.

Kölling, M., & Rosenberg, J. (2000). Objects first with Java and BlueJ (seminar session). ACM

SIGCSE Bulletin, 32(1), 429.

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. ACM

SIGCSE Bulletin, 33(3), 33 – 36.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy.

Computer Science Education, 13(4), 249 – 268.

Lattu, M., Tarhio, J., & Meisalo, V. (2000). How a visualization tool can be used: Evaluating a

tool in research and development project. 12th Workshop of Psychology Programming Interest

Group, Corenza, Italy, 19 – 32. Retrieved October 30, 2004, from http://www.ppig.org/papers/

12th-lattu.pdf

Lewis, J. (2000). Myths about object-orientation and its pedagogy. ACM SIGCSE Bulletin, 32(1),

245 – 249.

Maheshwari, P. (1997). Teaching programming paradigms and languages for qualitative learning.

Proceedings of the Second Australasian Conference on Computer Science Education (ACSE),

Melbourne, Australia, 32 – 39.

Mazaitis, D. (1993). The object-oriented paradigm in the undergraduate curriculum: A survey of

implementations and issues. ACM SIGCSE Bulletin, 25(3), 58 – 64.

220 N. Ragonis and M. Ben-Ari

Mitchell, W. (2001). A paradigm shift to OOP has occurred. . . implementation to follow. Journal of

Computing in Small Colleges (JCSE), 16(2), 95 – 105.

Neubauer, B.J., & Strong, D.D. (2002). The object-oriented paradigm: More natural or less

familiar? Journal of Computing in Small Colleges (JCSE), 18(1), 280 – 289.

Nourie, D. (2002). Teaching Java technology with BlueJ. Technical Articles, Online article at

java.sun.com. Retrieved October 30, 2004, from http://java.sun.com/features/2002/07/

bluej.html

Osborne, M. (1992). The rule of object-oriented technology in the undergraduate computer science

curriculum – educators’ symposium. Addendum to the Proceedings of OOPSLA’92, Vancouver,

British Columbia, Canada, 4(2), 303 – 308.

Parlante, N. (1997). Teaching with object-orientation libraries. ACM SIGCSE Bulletin, 29(1),

140 – 144.

Patterson, A., Kölling, M., & Rosenberg, J. (2003). Introducing unit testing with BlueJ. ACM

SIGCSE Bulletin, 35(3), 11 – 15.

Phillips, D.C. (1990). Subjectivity and objectivity: An objective inquiry. In E.W. Eisner &

A. Peshkin (Eds.), Qualitative inquiry in education: The continuing debate (pp. 19 – 37). New

York: Teachers College Press.

Ragonis, N. (2004). Teaching Object Oriented Programming to Novices. Ph.D. thesis, Weizmann

Institute of Science, Rehovot, Israel (in Hebrew).

Ragonis, N., & Ben-Ari, M. (2002). Teaching constructors: A difficult multiple choice. Presented at

Workshop on Pedagogies and Tools for Learning Object-Oriented Concepts ECOOP2002, Málaga,

Spain. Retrieved October 30 2004 from http://prog.vub.ac.be/ecoop2002/ws03/acc_papers/

Noa_Ragonis.pdf

Reid, R.J. (1993). The object-oriented paradigm in CS1. ACM SIGCSE Bulletin, 25(1), 265 – 269.

Rosson, M.B., & Alpert, S.R. (1990). The cognitive consequences of object-oriented design.

Journal of Human-Computer Interaction, 5(4), 345 – 379.

Sabar Ben-Yehoshua, N. (2001). The history of qualitative research – influences and directions. In

N. Sabar (Ed.), Qualitative Research: Genres and Traditions in Qualitative Research (pp. 13 – 16).

Tel-Aviv, Israel: Zmora Bitan (in Hebrew).

Schoenefeld, D.A. (1997). Object-oriented design and programming: an Eiffel, C+ , and Java for C

programmers. ACM SIGCSE Bulletin, 29(1), 135 – 139.

Schulte, C., & Niere, J. (2002). Thinking in object structures: Teaching modeling in secondary

school. Presented at Workshop on Pedagogies and Tools for Learning Object-Oriented Concepts

ECOOP2002, Malaga, Spain. Retrieved October 30 2004 from http://prog.vub.ac.be/

ecoop2002/ws03/acc_papers/Joerg_Niere.pdf

Shkedi, A. (2003). Words That are Trying to Touch: Qualitative Research Theory and Practice.

Tel-Aviv: Ramot (in Hebrew).

Stein, L.A. (1997). Beyond objects. Educators Symposium, Conference on OOP Systems, Languages,

and Applications, Atlanta, Georgia. Retrieved October 30 2004 from http://www.ai.mit.edu/

projects/cs101/beyond-objects.ps

The College Board (2004). The Advanced Placement Program. Retrieved October 30 2004 from

http://www.collegeboard.com/ap/students/compsci/java_subsetA.html or http://www.college-

board.com/student/testing/ap/sub_compscia.html

Thramboulidis, K.C. (2003). Sequence of assignments to teach object-oriented programming: A

constructivism design-first approach. Informatics in Education, 2((1), 103 – 122.

Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications of the ACM,

40(5), 80 – 91.

Woodman, M., & Holland, S. (1996). From software user to software author: An initial pedagogy

for introductory object-oriented computing. ACM SIGCSE Bulletin, 28(SI), 60 – 62.

Woodman, M., Davies, G., & Holland, S. (1996). The joy of software - starting with objects. ACM

SIGCSE Bulletin, 28(1), 88 – 92.

Comprehension of OOP Concepts by Novices 221

