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ABSTRACT

Using two email streams, we show that a personal filter
trained exclusively on user feedback substantially outper-
forms (p = 0.000) three industry-leading global spam filters
not using feedback. We show that autonomous personal fil-
ters, trained on the output from a global spam filter rather
than user feedback, substantially outperform (p = 0.000)
the global filter, if by a somewhat smaller factor than user-
feedback-trained personal filters. To our knowledge, no con-
trolled quantitative study addressing these questions has
previously been reported.

1. THE QUESTION

On-line personal spam filters [7], while remarkably effec-
tive at identifying spam, must be trained in real time by
labeling some or all of the messages directed to particular
users. The task of labeling, which typically falls on the recip-
ient, may be too difficult or too burdensome for many users,
occasioning the use of systemwide filters that demand no
user input. Systemwide filters typically employ some com-
bination of pattern-based rules, global whitelists and black-
lists, non-user-specific training examples or collaborative fil-
tering [2].

There is some controversy as to whether personal or sys-
temwide filters are more effective, but few controlled studies
have addressed the issue. The CEAS 2008 Live Spam Chal-
lenge® is one of the few that has compared personal and
systemwide filters. However, feedback labels were available
to the filters, and it is not known in general whether or
not these labels were used. We do know that personal fil-
ters were among the best performing, and that an industry-
leading collaborative filter, which did not use feedback, was
among the poorest. In this paper, we address the question,
“is it possible to improve global filter performance without
user feedback?”

2. THEORY

An on-line personal spam filter classifies messages one at
a time, in sequence, as they are delivered to the user’s inbox.
In the course of reading the messages, the user provides feed-
back, labeling some of them as either spam or ham. Very low
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error rates — less than 1% overall — are achieved by learning
methods that use no information other than the message
content and user feedback. The best results are achieved
with ideal feedback, in which each message is labeled, and
labeled accurately, by the user. In practice, a user cannot
be expected to label every message, or even most messages.
Typically, the user interface solicits feedback only for mis-
classified messages, or for a small subset of hard-to-classify
messages. The rest are assumed to be classified correctly.

Even among the messages actually labeled by users, er-
ror rates of 5% or more are typical [10, 21]. Noise-tolerant
learning methods have been shown to achieve classification
error rates many times smaller than the that of the feedback
[3, 17].

Global spam filters use information from a variety of sources
to classify messages, including hard-coded rules, blacklists,
and feedback from experts or a community of users. None
of these sources are specific to any particular user and, as
a consequence, global filters exhibit higher error rates than
personal filters — of the order of 5% for the industry-leading
filters we used.

These observations led us to form the hypothesis that a
global filter could be used as a surrogate user, providing sim-
ulated “feedback” labels to a noise-tolerant personal filter.
We call such an approach an autonomous personal filter be-
cause it is tailored to the user’s email, but requires no human
input.

Our rationale is based on the observation that the global
filter error rate is comparable to the feedback noise level for
which noise-tolerant personal filters work well. If the errors
appear as noise to the personal filter, the personal filter will
improve on the global filter. If the errors do not appear as
noise, the personal filter will learn to reproduce the errors,
yielding no improvement.

The extent to which the errors appear as noise depends
on the nature of both the global and personal filter. Filters
that rely on independent sources of information and employ
different learning methods are more amenable. To this end,
global filters that use blacklists and near-duplicate detection
are likely better than those that employ pattern-based rules,
as a personal filter can learn the patterns much more easily
than the blacklists or hashed examples.

For the same reason, weaker personal filters may work bet-
ter than stronger ones, because they are less likely to learn
the non-random nature of the global filter errors. The learn-
ing methods employed by personal filters may be broadly
characterized as generative or discriminative. A genera-
tive method models the characteristics of ham and spam



independently, and classifies a message according to which
model fits best. Naive Bayes (NB) is the best-known gener-
ative method [14]; sequential compression methods like Pre-
diction by Partial Matching (PPM) and Dynamic Markov
Compression (DMC) [1] are also generative. A discrimina-
tive method models only the characteristics that distinguish
ham from spam, ignoring the rest. Common discriminative
methods are logistic regression (LR) [8] and support vector
machines (SVM) [19].

For ideal feedback, the best-performing methods are dis-
criminative, with LR and SVM showing comparable effec-
tiveness [4, 20]. But they perform very poorly with noisy
feedback, unless parameters such as learning rate and reg-
ularization are adjusted [18]. Of the generative methods,
DMC works best for ideal feedback. Unlike the other meth-
ods discussed here, DMC treats each message as a sequence
of bits rather than a “bag of words” or other predefined to-
kens. This means, for example, that the method can learn
word fragments or sequences of words or characters that
might otherwise be lost in tokenization. DMC is less sensi-
tive to training noise than LR or SVM, but has no obvious
parameters that can be tweaked. Naive Bayes [14] is a some-
what weaker method, but is hardly affected by 5% training
noise.

It is worth noting that the term “Bayesian” has come
to be used as a generic term for any learning spam filter,
largely due to the influence of Graham [9] and Robinson
[13]. Their method, which is nearly ubiquitous in open-
source filters, is not strictly a naive Bayes classifier, due
to its use of per-message feature selection and normaliza-
tion. The method we label NB is a simplification of the
Graham-Robinson method. A further development of the
open-source community is the use of “train on error” and
“train until no error” strategies. When trained in this man-
ner, a “Bayesian” filter becomes discriminative rather than
generative.

Ensemble methods have been shown to work well for ideal
and noisy feedback [11, 3]. In almost every study, the fusion
of separate spam filter results yields a better filter than any
individual filter. Very simple methods like voting work well;
methods that combine filter scores work somewhat better,
provided the scores are amenable. If the filters making up
the ensemble make independent errors, and have similar er-
ror rates, the average of their results will necessarily have
a lower error rate. In practice, even if the error rates are
vastly different, the fusion filter still improves on the indi-
vidual filters.

3. DATASETSAND FILTERS

Using two distinct email streams, we tested autonomous
combinations of three global filters and four personal filters.
For comparison we also tested a state-of-the-art personal
filter with real and simulated user feedback.

Datasets. We used two distinct email streams: the CEAS
2008 Live Spam Challenge Laboratory Corpus?, and a pri-
vate corpus which we dub MrX-5. The CEAS corpus con-
sists of exactly the messages used in the CEAS 2008 Live
Spam Challenge, for both real-time and laboratory experi-
ments. For the real-time experiment, we configured and de-
ployed an industry-leading desktop plugin spam filter. Using
IMAP, we fetched the test messages in real-time, and the
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Figure 1: CEAS 2008 Corpus results, with com-
mercial desktop filter baseline. The large triangle
represents the performance of a commercial col-
laborative filter plugin applied to the messages in
the course of the CEAS 2008 Live Spam Challenge.
The top line represents the performance of a per-
sonal filter, trained using on-line active learning
on 0.8% of the messages. The other lines repre-
sent the performance of autonomous personal filters,
trained exclusively on the output from the baseline
filter. Among the autonomous filters, the best per-
formance is achieved by summing the results of naive
Bayes and baseline filters.

Filter % fpr % fnr  fnif

LR simulated human 0.63 0.04 149.8
NB+Desktop 0.63 0.25 25.6
NB autonomous 0.63 0.29 21.9
DMC+Desktop 0.63 0.63 10.1

DMC autonomous 0.63 3.07 2.1
SVM autonomous 0.63 4.00 1.6
LR autonomous 0.63 5.98 1.1
Desktop plugin 0.63 6.64 1.0

Table 1: False negative improvement factor relative
to desktop plugin filter on CEAS 2008 Corpus. All
factors > 1 are significant (p ~ 0.000).
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Filter % fpr % for  fnif

LR human in loop  4.24 0.04 20.2
DMC+Webmail 4.24 0.05 14.6
DMC 4.24 0.07 11.1
NB+Webmail 4.24 0.11 6.9
NB autonomous 4.24 0.14 5.3
Webmail builtin 4.24 0.81 1.0
LR autonomous 4.24 1.03 0.8
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Figure 2: MrX-5 Corpus results, with commercial
webmail filter baseline. The large triangle repre-
sents the performance of a commercial webmail sys-
tem when forwarded a stream of personal email in
real time. The top line represents the performance
of a personal filter, trained by the actual message
recipient using on-line active learning on 1.4% of
the messages. The other lines represent the perfor-
mance of autonomous personal filters, trained exclu-
sively on the output from the baseline filter. Among
the autonomous filters, the best performance is
achieved by summing the results of DMC and base-
line filters.

plugin moved those it classified as spam to a junk folder.
Due to technical issues, about 10% of the messages were
never delivered to the filter; these messages were not con-
sidered in our evaluation. The net result was a corpus of
123,100 messages — 23,844 ham and 99,256 spam — with la-
bels indicating the filter result and also the gold standard
as adjudicated by CEAS.

For comparison, we also captured the results of the best-
performing personal filter (LR) in the CEAS on-line active
learning experiment [15]. Each filter was allowed to solicit
user feedback for at most 1000 of the messages (about 0.8%).
Active learning directly emulates the user interface scenario
in which user feedback is solicited from time to time for
“hard to call” messages [12]. It also aptly models one-sided
feedback, in which a small number of spam messages are
deliberately delivered to the inbox so as to solicit user er-
ror reports [16]. Although our primary goal is to evalu-
ate autonomous filters, we include the result of this non-
autonomous filter for comparison.

Our second email stream, MrX-5, consists of 266,424 mes-
sages — 6908 ham and 259,516 spam — delivered to a partic-
ular user from July 2008 through March 2009. While this
dataset is private, the authors undertake to test other re-
searchers’ filters with it, on request. The same user’s email
has been used for the MrX, MrX-2 and MrX-3 datasets re-
ported elsewhere [7, 2]. The messages in the stream were
filtered contemporaneously using LR in exactly the same ac-
tive learning configuration as for CEAS, but with real rather
than simulated user feedback. In addition, the messages
(prior to filtering) were forwarded to an industry leading
webmail system, with an embedded spam filter. While the

Table 2: False negative improvement factor relative
to webmail builtin filter on MrX-5 Corpus. All fac-
tors > 1 are significant (p ~ 0.000).

webmail system has a (somewhat cumbersome) interface for
user feedback, it was not used. A list of messages delivered
to the inbox was captured from the system, and used to cre-
ate labels indicating the webmail filter result. Finally, the
email stream was filtered using the IT department’s Spa-
mAssassin server. The result — a numerical “spamminess”
score for each message — was captured.

Global filters. For the CEAS dataset, the global filter
was a commercial desktop plugin implementation of a collab-
orative spam filter based on duplicate detection. The filter
maintains a hashed digest of each reported spam message
and a near-duplicate detection method determines whether
each message has previously been reported as spam. Filter
errors arise from two sources: errors in near-duplicate detec-
tion, and errors or omissions in the database of previously
reported spam. Neither of these sources of error is obvi-
ously correlated with the content-based features employed
by a personal filter. The error rates (0.6% false positives,
6.3% false negatives) are within the assumed range.

For MrX-5, two global filters were used. The webmail
filter uses an undisclosed method; we expect that it relies
heavily on network authentication, blacklists, and the like.
The filter also supplies a user interface to mark email as
spam or not, and is advertised as learning from this feed-
back. However, this interface was not used. The resulting
error rates (4.2% false positives, 0.77% false negatives) are
within the assumed range. The SpamAssassin filter (SA)
uses a wide variety of information sources, including black-
lists and near-duplicate detection, and also content-based
patterns. SpamAssassin includes a “Bayesian” filter, which
was not used. SpamAssassin’s error rates (with the default
threshold setting of 5) of 0.25% fpr, 17% fnr are higher than
those of the other filters, but still amenable for noise-tolerant
methods.

User-trained personal filter. For both datasets, we
used exactly the watl filter that yielded best or near-best
results at TREC 2007 [5]. This method examines only the
first 3500 bytes of each message, treating each overlapping
character 4-gram as a token. Each message is classified using
logistic regression, and a single gradient descent step with
learning rate 0.004 is taken for each feedback message. The
filter was trained in an active learning scenario. For the
CEAS dataset, the filter was allowed to request feedback on
up to 1000 messages, but no more. For MrX-5, the filter first
delivered messages classified as ham to the inbox, and then
also delivered messages whose classification was uncertain to
a different folder. The user perused this folder occasionally,
identifying messages as ham or spam. 3843 messages (1.4%)
were placed in the folder.



Filter % fpr % for  fif

LR human in loop 0.25 0.65 25.8
NB+SpamAssassin 0.25 9.13 1.8
DMC+SpamAssassin =~ 0.25 1259 1.3

SpamAssassin 0.25 16.70 1.0
NB autonomous 0.25 1886 0.9
DMC autonomous 0.25 23.20 0.7
LR autonomous 0.25 31.36 0.5

Table 3: False negative improvement factor relative
to SpamAssassin global filter on MrX-5 Corpus. All
factors > 1 are significant (p ~ 0.000).

Autonomous personal filters. We tested two discrim-
inative and two generative filters previously shown to be
noise tolerant [3, 17]. The wat1 logistic regression filter was
used, with learning rate reduced to 0.0005. A relaxed on-line
support vector machine (ROSVM) [19] was used. This filter
is derived from tftS1F, whose performance at TREC 2007
was on par with watl. The only change was to decrease the
regularization parameter C from 100 to 0.5, a modification
known to increase noise tolerance.

The generative filters were Dynamic Markov Compression
and our own adaptation of Graham and Robinson’s Naive
Bayes method. The DMC implementation was identical to
wat2 which showed strong third-place results (after watl
and tftS1F) at TREC 2007.

The details of our naive Bayes method have not previously
been reported, and are therefore presented here. We imple-
mented it and tuned it some time ago in an effort do discover
the essence of Graham and Robinson’s methods. Our naive
Bayes implementation is in fact an ensemble formed by sum-
ming the results of two NB filters using different tokeniza-
tion. The first member of the ensemble, NB-4G, uses over-
lapping 4-grams from the first 3500 bytes of the message,
including headers. The second member, NB-W, uses the
first 3000 “words”, where a word is defined as any sequence
of alphabetic and numeric characters. For each message, the
filter computes the log-odds-ratio for each token ¢, based on
the number of times ¢ has appeared in feedback messages
labeled as spam (¢t € spam) or in feedback messages labeled
as ham (t € ham):

logOR; = log <|{t € spam}| |{t ¢ ham}|> '

[{t & spam}| " [{t € ham}]|

The score for NB-4G is the mean of the largest and smallest
k values of logOR;, where k = 30. Note that the k largest
values are typically positive, indicating spam, while the k
smallest are typically negative, indicating ham. The score
for NB-W is derived by the same method with £ = 15. The
overall score for NB is the sum of these two scores.

Global-autonomous ensemble filter. Given prior re-
sults showing the effectiveness of spam filter fusion, we pre-
dicted that the fusion of global and autonomous personal
filter results might well exceed the performance of either.
To this end, it was necessary to derive a score from the
global filter in order to combine it with the score from the
autonomous personal filter. For the desktop and webmail
filters, messages classified as spam were given a score of 1,
while messages classified as ham were given a score of 0. For
SpamAssassin, we added the score reported by SpamAssas-
sin to the score from the autonomous personal filter.
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Figure 3: MrX-5 Corpus results, with SpamAssas-
sin filter baseline. The large triangle represents
the performance of SpamAssassin as configured and
run by the recipient’s IT department. The curve
with small triangles represents the score returned
by SpamAssassin. The top line represents the per-
formance of a personal filter, reproduced from figure
2. The other lines represent the performance of au-
tonomous personal filters, trained exclusively on the
output from the baseline filter. Although the indi-
vidual autonomous filters do not appear to improve
on the baseline, ensemble filters do.

4. EVALUATION

False positive rate (fpr) is the fraction of ham messages
that are misclassified by the filter. False negative rate (fnr)
is the fraction of spam messages that are misclassified. All
the personal filters evaluated here return a score s rather
than a categorical result; such a categorical result is eas-
ily derived by comparing s to some fixed threshold ¢. For
each possible value of t the same filter yields a different pair
(fnre, fpre) of false positive and false negative rates. Deter-
mining the “best” choice of ¢ involves a somewhat impon-
derable tradeoff between fnr and fpr. Instead of evaluating
with respect to some arbitrary ¢, we use receiver operating
characteristic analysis to evaluate filter effectiveness. A re-
ceiver operating characteristic curve (ROC) is simply the set
of all (fnre, fpr:) achievable for some ¢t. From the curve one
may determine, for example, what fnr: would be if ¢ were
set so that fpr: = x, where x is some specific false positive
rate. Or one may determine what fpr; would be if ¢ were
set so that fnr: =y.

The desktop and webmail filters report only a categorical
result. Their effectiveness is therefore characterized by a sin-
gle (fpr, fnr) pair which may be juxtaposed with the ROC
curves for comparison. In general, a curve that lies above
(fpr, fnr) indicates superior effectiveness. For quantitative
comparison, we set t such that fpr: = fpr and compute the
false negative improvement factor fnif = f;—L:t Informally,
a filter with fnif = k is “k times better.” For fnif > 1
we estimate statistical significance by applying a sign test
to the categorical result derived using t.

We could equally well have used false positive improve-
ment factor fpif = ffpr , which fixes fnr; = fnr. The use

pT-
of one or the other does not imply that the value of fpr or




fnr is particularly apt; it is merely the value yielded by the
global filter and hence the only available common frame of
reference. fnif and fpif are simply two measures to in-
dicate the degree to which the ROC curve for the learning
filter is superior to the point for the global filter. A supe-
rior curve will have both fnif > 1 and fpif > 1; for our
purpose the choice of measures is not critical, and we follow
the convention of considering the y-axis (fnr:) to be the
dependent variable.

SpamAssassin returns both a categorical result and a score.

The point representing the categorical result lies on the ROC
curve representing the score. For consistency with the other
comparisions, we report fnif relative to this point.

5. RESULTS

Our first experiment used the CEAS corpus, with the
commercial desktop filter as a baseline. As seen in figure
1 and table 1, the baseline filter achieves fpr = 0.63% and
fnr = 6.64%. While these error rates are perhaps higher
than advertised, they are competitive with the best global
filter results we have observed for the MrX corpora. The
personal filter, with 1000 feedback messages, achieves (with
suitable choice of t) the same fpr and fnr; = 0.04, an im-
provement factor of fnif = 150.

For our primary hypothesis, the filters of interest are those
labeled “autonomous.” The ROC curves for all autonomous
filters except LR are clearly superior to the baseline, though
naive Bayes (NB) and the ensemble of naive Bayes and the
baseline (NB+Desktop) are substantially better. For all au-
tonomous filters fnif > 1 (p ~ 0.000). However, it would
be misleading to conclude that the LR result (fnif = 1.1)
represents a substantive improvement over the baseline. In
fact, the LR curve very nearly contains the baseline point,
indicating that it learned the nature of the baseline filter
errors.

SVM (fnif = 1.6) and DMC (fnif = 2.1) show substan-
tive improvements over the baseline, but this improvement is
eclipsed by that of NB (fnif = 22). The ensemble method
NB+Desktop improves NB somewhat (fnif = 26). The
ensemble method DMC+Desktop (see table 1) dramatically
improves DMC (fnif = 10), but not to nearly the effective-
ness of NB.

Our second experiment used the MrX-5 corpus, with the
builtin webmail filter as a baseline. As seen in figure 2 and
table 2, the baseline filter achieves fpr = 4.2% and fnr =
0.8%. We were surprised by the high false positive rate,
and hand-verified for a one month period that every false
positive (some 30 messages) was in fact delivered to the
spam folder. The personal filter, which was trained by the
user in the normal course of reading email, achieved fnr; =
0.04 (fnif =20). DMC (fnif = 11) and NB (fnif = 5.3)
both improved on the baseline, but in this case DMC is
superior. The ensemble method improves on both DMC
(fnif = 15) and NB (fnif = 6.9). The LR curve once
again falls near, but in this case slightly below, the baseline
(fnif = 0.8). We were unable to run SVM due to the size
of the dataset.

Our third experiment also used the MrX-5 corpus, but
with SpamAssassin as the baseline. As seen in figure 3 and
table 3, SpamAssassin achieves fpr = 0.25% and fnr =
17%. The same personal filter results from our second ex-
periment yield fnr: = 0.65% (fnif = 26) relative to the
SpamAssassin baseline. Performance of the autonomous fil-

ters is worse than for the previous two experiments, with
all individual filters showing fnif < 1. But the ensemble
methods both improve on the baseline: NB+SpamAssassin
(fnif = 1.8), DMC+SpamAssassin (fnif = 1.3). These
improvements are significant p ~ 0.000 and substantive,
though not as dramatic as for the previous experiments.

6. DISCUSSION

The results of our three experiments support the hypoth-
esis that autonomous personal filters can improve on global
systemwide filters. Generative filters like naive Bayes and
DMC work well for this purpose, particularly in ensemble
with the systemwide filter. Discriminative filters like lo-
gistic regression and SVM do not work so well, even with
noise-tolerant parameter settings. This result is perhaps not
surprising, as these filters should be able to isolate features
that are highly correlated with the global filter’s errors, and
therefore reproduce the errors. For example, the IP address
of a blacklisted server would appear in the message header.

The results were least dramatic with respect to the Spa-
mAssassin baseline filter. This result was predicted, as Spa-
mAssassin relies heavily on content-based patterns which
the autonmous filter can learn. But SpamAssassin also
uses blacklists and collaborative filtering, which may be the
source of apparent noise. SpamAssassin includes a Graham-
Robinson “Bayes” filter which is (optionally) deployed in a
manner similar to that described here. The filter is trained
on the result of the SpamAssassin rules, but only when those
rules yield an extreme score, and only when the rules dis-
agree with the Bayes filter. We have previously evaluated
the effect of the Bayes filter [6, 7] in this setting and found
it to offer a small improvement. A topic for future research
is to see if the approach presented here would yield a more
substantial improvement. Our reasons for believing that it
might are:

e Training on messages with extreme scores is the oppo-
site of what is known to work well for personal filter
training. In general, messages with intermediate scores
yield the most information as training examples.

e The train-on-error regimen tends to make the Bayes
filter discriminative rather than generative. Our re-
sults indicate that generative filters work better.

e The global filter that SpamAssassin uses includes content-

based patterns as well as blacklists and collaborative
filter. We posit that excluding the content-based pat-
terns would yield better results.

It is impossible to avoid the conclusion that, notwithstand-
ing the improvements in autonomous filtering demonstrated
here, a filter harnessing user feedback vastly outperforms
those that don’t. It may be that some other autonomous
filter can do as well as one harnessing feedback, but to our
knowledge none has been demonstrated in a controlled ex-
periment. The amount of feedback involved in training the
LR filter used here is not particularly onerous, and it may
be argued that much larger effort and risk are associated
with forgoing improvement factors of 20 or more. While
the results presented here mitigate the difference between
filters that harness feedback and those that do not, those
that harness feedback remain the standard to beat.
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