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ABSTRACT

When trained and evaluated on accurately labeled datasets,
online email spam filters are remarkably effective, achieving
error rates an order of magnitude better than classifiers in
similar applications. But labels acquired from user feedback
or third-party adjudication exhibit higher error rates than
the best filters — even filters trained using the same source of
labels. It is appropriate to use naturally occuring labels — in-
cluding errors — as training data in evaluating spam filters.
Erroneous labels are problematic, however, when used as
ground truth to measure filter effectiveness. Any measure-
ment of the filter’s error rate will be augmented and perhaps
masked by the label error rate. Using two natural sources of
labels, we demonstrate automatic and semi-automatic meth-
ods that reduce the influence of labeling errors on evaluation,
yielding substantially more precise measurements of true fil-
ter error rates.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]:information filtering

General Terms: Experimentation, Measurement

Keywords: spam, email, filtering, classification, noise

1. INTRODUCTION

When trained and evaluated on accurately labeled datasets,
online email spam filters achieve remarkably good perfor-
mance. Gradient descent logistic regression [14], for exam-
ple, yields an overall error rate of less than 0.5% when eval-
uated on the trec05p-1 corpus [10] using the TREC' Spam
Track methodology [11]. This result betters by an order of
magnitude those reported for similar applications of classi-
fiers (cf. [28]). But is it good enough? Can it be improved?
Can it be demonstrated beyond the laboratory? Imprecise
knowledge of ground truth — the correct label for each fil-
tered message — presents a substantial impediment to ad-
dressing these questions.

"http://trec.nist.gov
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The TREC methodology assumes a chronological sequence
of accurately labeled email messages. The labels serve two
distinct purposes in evaluation: as training examples for the
filter, and as ground truth against which to measure filter
error. Label errors therefore compromise both the filter’s
learning and the accuracy of the measured error.

The TREC datasets were carefully labeled by the orga-
nizers, adhering to a prescribed definition of spam:

Unsolicited, unwanted email that was sent indis-
criminately, directly or indirectly, by a sender
having no current relationship with the recipient.

While there is no doubt that the TREC corpora contain
some labeling errors, it is reasonable to assume that the er-
ror rate is not much worse than that of the best reported
filter results using the labels; i.e. about 0.5%. Labels ac-
quired in real-world deployment may be expected to exhibit
much higher error rates. When explicitly asked to classify
messages, human subjects have been reported to exhibit er-
ror rates of 3%-7% [30, 16]. Tacitly derived labels, such as
those obtained from a “report spam” button, where it is as-
sumed that unreported messages are ham, may have even
higher rates.

It would be more appropriate to use naturally occuring
labels — including errors — as training data, in conjunction
with more accurate labels for measurement. Were the nat-
ural labels used for measurement, the estimated filter error
rate would be augmented and perhaps masked by the la-
bel error rate, especially when the filter’s true error rate is
substantially lower than that of the labels. A filter with a
true error rate of 0.5%, for example, might be estimated to
have an error rate between 5.5% and 6.5% when evaluated
using labels with an error rate of 6.0%, depending on the
correlation between filter and label errors. A filter with a
true error rate of 1.0% might show an error rate between
5.0% and 7.0%. These measurements would be insufficient
to distinguish the two filters, and might even invert their
relative performance.

An ideal filter evaluation would use a realistic sequence
of messages, with a set of natural labels for training and a
set of gold standard labels for evaluation. Accurately la-
beled sequences of messages are rare and somewhat unre-
alistic due to the costs and logistic challenges of acquiring
and labeling them. The only public dataset for which both
accurate and natural labels are available is trec05p-1, the
TREC 2005 Public Spam corpus. The messages were ac-
quired from Enron and released to the public in the course
of a criminal investigation; accurate labels were created by
the TREC coordinators [10]; natural labels were collected



later from Web users through the SpamOrHam effort [16].
Although the typicality of the messages and labels may be
questioned, the messages are real and the two labeling ef-
forts are clearly independent. The natural label error rate,
at 6.7% [25], overwhelms that of the accurate label error
rate.

The cost and difficulty of acquiring both natural and accu-
rate labels for a realistic email sequence may be prohibitive.
The SpamOrHam labels were acquired with much effort on
the part of Web users, and predicated on the ability to pub-
lish the messages. It is unlikely that such an effort could be
marshalled again, and, in any event, privacy considerations
prevent almost any realistic email collection from being pub-
lished. The gold standard labels were also acquired with
much effort; privacy considerations impede similar efforts,
as assessors are typically permitted to view messages only
under restrictive and potentially unwieldy conditions.

2. RELATED WORK

Spam filtering as a research area is relatively new but
nevertheless quite diverse. The TREC Spam Track is the
largest and most realistic laboratory evaluation to date. In
the three years it ran, ten test corpora with a total of 721,461
messages were used to test filters submitted by thirty-five
participants. The results of more than one thousand experi-
mental runs may be found in the summaries and appendices
of the TREC proceedings [11, 6, 7].

The core task at TREC — the immediate feedback task
— simulates the on-line deployment of a spam filter with
idealized user feedback. The task, along with methods and
evaluation measures embodied in an open-source toolkit [19],
was developed by Cormack and Lynam [12].

This on-line evaluation strategy differs from traditional
batch evaluation in that the messages are ordered and not
explicitly partitioned into training and test examples. Every
example is potentially available for training once the filter
has rendered a verdict. The difference in methodology and
results for state-of-the art filters has been studied by Cor-
mack and Bratko [9]. The best results in these tests have
been achieved by on-line support vector machines [26], logis-
tic regression [14], and compression models [3], along with a
number of open-source “Bayesian” filters modeled after the
work of Graham and Robinson [15, 24], notably Bogofil-
ter [22] and OSBF-Lua [2]. The best-performing approach
demonstrated using TREC methods and datasets is the fu-
sion all filters submitted for evaluation at TREC [20].

Variants of the task, including delayed feedback, partial
feedback, and active learning explore more realistic models
of user feedback; in particular, the impact of tardy, incom-
plete or restricted presentation of training examples after
classification. The CEAS Live Challenge [1] integrates the
TREC methodology with a live data stream, so as to be able
to compare laboratory and in vivo filter deployment. Two
new laboratory corpora were created; one captured in real
time, and the other sampled from email delivered to clients
of a large email service provider.

Sculley and Cormack [25] explore the effect of synthetic
and natural label noise on filter training and conclude that
both substantially compromise filter performance, natural
noise more substantially so. Several approaches to mitigat-
ing the effect are found to improve filter performance, but
not to anywhere near that achieved with noise-free train-
ing labels. A regularized version of an SVM classifier which

performed well on synthetic noise yielded mediocre perfor-
mance on natural noise. The effect of label noise on the
measurement of filter error is not considered.

Labeling noise has been studied from the perspective of its
impact on the accuracy machine learning algorithms, with
the methodology of injecting artificial noise into a an ini-
tially noise-free dataset. Brodley and Friedl [4] proposed a
data cleaning methodology whereby instances misclassified
with high confidence by a learner (or ones for which there
is a significant disagreement within an ensemble of learners)
are removed from the training collection. They showed that
models created over such cleaned data tend to be more ac-
curate and demonstrated that ensemble based models are
more resilient to class noise, at least when the level of noise
is moderate. In addition to cleaning methods relying on
inconsistent instance removal, alternatives based on label
correction [25] and instance weighting [23] have also been
considered.

While there exists a substantial body of published worked
dedicated to different filtering and feature extraction tech-
niques, our work is not so much to improve on these tech-
niques as to improve the evaluation methodology; in partic-
ular, the ability to discriminate among and to measure the
absolute performance of the best reported approaches for
spam filtering, and for training label noise mitigation.

Lam amd Stork [18] discuss the problem of evaluating
classifiers by means of test data with noisy labels. Given
an estimate of the label noise and the assumption that label
noise and filter error are uncorrelated, a precise estimate
of filter error may be achieved, given enough examples. If,
on the other hand, there may be correlation, wide bounds
apply.

The issue of noisy and incomplete relevance judgements
has been considered extensively within the context of the
laboratory evaluation of information retrieval systems (cf.
[5]). Although inter-adjudicator disagreement is large, sys-
tem rankings are not particularly sensitive to it. Incom-
pleteness is commonly resolved by the “pooling method,” in
which the top-ranked documents from each system are ad-
judicated as relevant or not, and all other documents are
assumed to be irrelevant. More efficient methods select for
adjudication more documents from top-performing systems,
or documents most likely to discriminate among the filters
under test; these methods are the subject of ongoing research
interest. IR evaluation research is typically concerned only
with ranking systems by relative performance on a particu-
lar corpus, as opposed to a calibrated effectiveness measure.
IR evaluation further differs from spam filter evaluation in
that relevant documents are extremely rare, and error rates
(e.g. l-recall, 1-precision) are quite large — of the order of
50% in a typical evaluation.

3. OBJECTIVES

The objective of this work is to determine the extent to
which label error compromises filter performance measure-
ment, and to validate a method of achieving better measure-
ments without the intensive adjudication effort and access
to messages normally associated with creating an accurate
labeling. The automatic method requires no access what-
soever to the messages, while the semi-automatic method
requires adjudication of a small fraction. The automatic
method is applicable in situations where results are gathered
by instrumenting an email system, but the content of mes-



adj
| ham  spam all
- ham | 28493 4058 32551
] spam | 4055 43870 47925
all 32548 47928 80476

Table 1: Agreement between nat
SpamOrHam label sets.

and adj

trec
| ham  spam all
- ham | 30612 1939 32551
s spam | 3596 44329 47925
all 34208 46268 80476

Table 2: Agreement between nat and trec label sets.

trec
| ham  spam all
— ham | 30622 1926 32548
9 spam | 3586 44342 47928
all 34208 46268 80476

Table 3: Agreement between adj and trec label sets.

sages are not available to evaluators. The semi-automatic
method is applicable in situations where it is possible to
adjudicate some messages, provided the number is not too
onerous. For example, the original recipient may be asked
to review occasional messages, or to spend an hour or two
participating in a review process [21].

We assume that it is possible to apply several filters to
exactly the same sequence of messages with the same train-
ing labels and that each filter’s result (either a categorical
decision or a score or both) is available, along with a nat-
ural label, for each message in the sequence. The results
of these filters are fused to form a set of labels which, we
hypothesize, has a lower error rate and yields more accurate
results than the natural labels when used as ground truth
for evaluation. The hypothesis is tested in several ways:

e direct comparison between pseudo-gold and gold stan-
dard labels, if a gold standard is available;

e adjudication of differences between pseudo-gold and
natural labels, using an independent adjudicator;

e comparison of performance measures (AUC and LAM);
e comparison of filter performance rankings;

e measuring the statistical power to discriminate between
pairs of filters.

4. DATASETS

We used email messages from two separate corpora: the
TREC 2005 Public Spam Corpus (trec05p-1) [11], and the
CEAS 2008 Live Challenge private corpus [1]. Four indepen-
dent sets of labels were used in total; three for the TREC
messages and one for the CEAS messages.

The TREC corpus includes a gold standard label for each
message. In addition, we acquired the labels collected by
the SpamOrHam project [16]. The messages labeled by

Tag Description

bayes | Naive Bayes, character 4-gram binary fea-
tures, first 3000 bytes of message, including
header. Per-message feature selection.

nobs | Naive Bayes, alphanumeric sequence “word”
features, first 3000 words of message, includ-
ing header. Per-message feature selection.,
bogo | Bogofilter version 1.1.5, default parameters
[22].

dmc | Dynamic Markov Compression [3].

watl | Gradient descent logistic regression, 4-gram
character features [8].

osbf OSBF-Lua [2].

tftl Relaxed Online Support Vector Machine [27].

Table 4: Base filters used for evaluation.

Tag Description

logbagf | watl, modified to train only 10% of the fea-
tures, selected at random for each example.

logbagm | ensemble of watl filters, each modified to
train only 10% of examples, selected at ran-
dom.

Irslow watl, with the learning rate parameter re-
duced from 0.01 to 0.001

dmc Dynamic Markov Compression [3].

tft1-0.5 tftl, with C parameter reduced from 100 to
0.1.

Table 5: Base filters altered to reduce sensitivity to
label noise.

SpamOrHam were selected at random with replacement, re-
sulting in a variable number of labels per message. From
the messages having two or more labels, we selected one la-
bel at random to serve as the natural label, and a second
(without replacement) to simulate the result of adjudica-
tion. Messages having fewer than two SpamOrHam labels
were eliminated from the evaluation. The TREC labels were
used as a reference standard, and also to simulate more re-
liable adjudication. The resulting dataset contains 80,476
messages, approximately 33,000 ham and 48,000 spam.
The CEAS corpus was collected from messages delivered
to clients of a large service provider. The messages to be la-
beled were selected at random from those delivered to a set
of volunteer clients; the labels are the responses to specific
adjudication requests to the recipients. The corpus con-
tains 198,574 messages, of which 89,451 are labeled ham,
and 109,123 spam. There is exactly one label per message.

5. FILTER EVALUATION MEASURES

The TREC methodology requires that filters return both
a hard result (ham or spam) and a soft result (a “spaminess”
score) which may be compared after the fact to some thresh-
old ¢t. Hard results are evaluated as a pair of error rates
(fpr, fnr) for ham and spam respectively. The labels fpr
and fnr denote false positive and false negative rate from
diagnostic test theory [13]. A classifier with lower fpr and
for than another is superior. (Under the assumption that all
messages have equal misclassification cost [17].) Whether a
classifier with a lower fpr and higher fnr is superior or in-
ferior depends on the user’s sensitivity to each kind of error.



Tag Description

bayesm 8 bayes ensemble, disjoint training examples.
nobsm 8 nobs ensemble, disjoint training examples.
bogom 8 bogo ensemble, disjoint training examples.
dmcm 8 dmc ensemble, disjoint training examples.
watlm 8 watl ensemble, disjoint training examples.
logbagfm | 8 logbagf ensemble, disjoint training exam-

ples.

osbfm 8 osbf ensemble, disjoint training examples.
tftIm 8 tft1l ensemble, disjoint training examples.

Table 6: Base filters in bagging configuration to re-
duce sensitivity to label noise.

A plethora of measures — including accuracy, weighted ac-
curacy, total cost ratio, F-measure, and utility — attempt
to quantify this sensitivity and to use this quantification to
combine fpr and fnr, along with the corpus ham-to-spam
ratio, into a one-dimensional measure.

The soft result may be characterized by the set of all dis-
tinguishable (fpr, fnr) pairs for different values of ¢. This set
of points defines a receiver operating characteristic (ROC)
curve [29]; a filter whose ROC curve is strictly above that
of another is superior in all deployment situations, while a
filter whose ROC curve crosses that of another is superior
for some threshold settings and inferior for others.

The area under the ROC curve (AUC) provides an esti-
mate of the effectiveness of a soft classifier over all threshold
settings. AUC also has a probabilistic interpretation: it is
the probability that the classifier will award a random spam
message a higher score than a random ham message. In the
spam filtering domain, typical AUC values are of the order of
0.999 or greater; following TREC, we report (1-AUC)% , the
area above the ROC curve, as a percentage. So AUC=0.999
would be reported instead as (1-AUC)%=0.1.

While AUC provides an amenable score for ranking soft
classifiers, the pair (fpr, fnr) does not serve this purpose
for hard classifiers. It has been observed [13] that the di-
agnostic odds ratio, dor = W is, for many di-
agnostic tests, effectively invariant over a large number of
threshold settings. Intuitively, a change in threshold set-
ting that increases the odds of misclassifying ham by some
multiplicative factor tends to decrease the odds of misclas-
sifying spam by the same factor. Therefore dor is a useful
summary measure largely uninfluenced by threshold setting.
The same effect has been observed at TREC [11], giving
rise to the measure logistic average misclassification rate,

LAM = logit~*(legttUpr) Hogit(Inr)y — jogit= (log(dor—°?)).

2
Note that the value LAM is necessarily between fpr and

fnr; when t is set to equalize error rates, we have fpr =
fnr=LAM.

Under the assumption that dor is invariant, it is possi-
ble to estimate (fpr’, fnr’) from (fpr, fnr) by solving the
equation

(L= fpr)- (1= for) _

(1—fpr')- (A — frr')
for - fnr ’

for’ - fnr!

It is further possible to estimate AUC =~ fol (fnr)d(fpr).

6. SPAM FILTERS

We chose to evaluate several base filters previously con-

figured for the TREC Spam Filter Evaluation Toolkit. In
addition, we included variants of these filters altered to mit-
igate training label error.Table 4 provides an identifying tag
and a short description for each base filter. Table 5 describes
altered versions of some of these filters. Table 6 identifies
ensemble filters that we created by running a particular fil-
ter eight times, training each time on only one eighth of the
examples, randomly partitioned. We were unable to com-
plete some of the filter runs either because the filters failed
or because they failed to complete in a reasonable amount
of time. These runs were excluded from consideration; as
a consequence 17 of the subject filters were used with the
TREC data, and 11 on the CEAS data.

7. APPROXIMATIONSTO TRUTH

The overall objective of spam filter evaluation is to deter-
mine which spam filters better approximate truth, so that
they may better serve their intended purpose. If the true
class of each message is known, filter performance may be
quantified by an amenable measure of the distance between
the filter’s result and truth. The TREC evaluations use re-
ceiver operating characteristic (ROC) area under the curve
(expressed as (1 — AUC)(%), so that lower numbers are
better) and logistic average misclassification rate (expressed
as (LAM)(%)) as threshold-insensitive measures of perfor-
mance.

When a pair of filters exhibit similar or contradictory rel-
ative performance according to these measures, pairwise dif-
ferential comparison may provide a more sensitive indication
of which is closer to truth. In a differential comparison, only
the cases of disagreement between filter results are compared
to truth; a simple sign test determines the better approxi-
mation to truth. A tournament — in which each filter is
differentially compared to each other filter — may be used
to establish a ranking, but no quantitative measure of how
close an approximation to truth is achieved by each filter.

Differential comparison, unlike the TREC measures, is
very sensitive to the filters’ threshold settings, and also to
the prevalence of spam in the evaluation dataset. It there-
fore cannot reward, and is likely to penalize, a filter’s ability
— as may well be desirable — to identify ham with a lower
error rate than spam. In the TREC setting, where filters
report a confidence score in addition to a categorical clas-
sification, this shortcoming of differential comparison can
be mitigated by threshold-adjusted differential comparison.
Prior to comparison, each classifier’s threshold is adjusted
to achieve equal apparent ham and spam error rates (i.e.
fpr = fnr = LAM). Threshold-adjusted differential com-
parison affords a consistent threshold-independent approxi-
mation, albeit one that fails to capture one aspect of filter
performance.

Truth, at least with respect to spam filtering, is an ab-
straction. It may be approximated but never realized; the
aptness of an approximation can only be estimated. Infor-

winner
trec (p ~ 0.00)
trec (p ~ 0.00)
tie (p ~ 0.8)

a ll l2 ll =a lz =a
adj nat trec 1467 4068
nat adj trec 1467 4045
trec nat adj 4045 4068

Table 7: Adjudicated differential comparison be-
tween label sets /1 and [l> using a as adjudicator.



adjudication

rank trec nat adj
1 tft1-05 tf£1-05 tft1-05 (p =~ 0.00)
2 dmcm dmcm logbagfm (p < 0.39)
3 logbagfm logbagfm Irslow (p < 0.87)
4 Irslow logbagm dmcm(p < 0.96)
5 logbagm Irslow logbagm (p < 0.36)
6 watlm logbagf logbagf (p < 0.67)
7 logbagf watlm watlm(p < 0.03)
8 osbfm osbfm osbfm(p < 0.66)
9 bogom bogom bogom(p ~ 0.00)
10 dmc dmc dmc(p ~ 0.34)
11 bogo bogo bogo(p = 0.00)
12 nobs nobs wat1(p =~ 0.00)
13 watl watl nobs(p ~ 0.00)
14 bayes bayes bayes(p ~ 0.00)
15 nobsm nobsm nobsm(p = 0.00)
16 bayesm bayesm bayesm/(p ~ 0.00)
17 tftl tftl tftl

power 0.82 0.90 0.88

Table 8: Adjudicated tournament ranking of subject
filter performance, using trec, nat and adj labels as
ground truth.

mally, through a combination of qualitative observations and
statistical inference, we argue that the TREC labels better
approximate truth than either of the two SpamOrHam label
sets, which are different but equally good approximations.
Pairwise agreement and disagreement between the three la-
bel sets (dubbed trec, nat, and adj) is quantified in tables
1 through 3. We see that nat and adj disagree on 10% of
the messages, while each disagrees with trec on 6.9%. These
agreement rates indicate that SpamOrHam judgements have
5.2% random error, and that the TREC judgements have
considerably less. There may also be a systematic difference
between the effective definition of spam applied by TREC
and SpamOrHam assessors, or any number of other system-
atic differences. The net effect is that each approximation
differs from truth by two factors: random error (noise) and
systematic error (bias).

For the purposes of this evaluation we define the true class
to be the majority opinion of the hypothetical infinite popu-
lation of users from which the SpamOrHam judgements are
drawn. That is, we deem the SpamOrHam labels to have no
bias, and to differ from truth by random error alone. A spam
filter’s performance is therefore defined by how well it pre-
dicts the majority opinion, notwithstanding any quibbling
about the definition of spam or the competence of members
of the population to apply the definition.

From the perspective of this definition, the TREC labels
exhibit some bias. Evidence of this bias is apparent from the
prevalence of spam labels in each set: nat contains 59.6%
(95% c.l.: 59.2 — 59.9) spam, as does adj (59.2 — 59.9). On
the other hand, trec contains 57.1% spam (57.2 —57.8). nat
and adj agree within the limits of chance (as we would ex-
pect, given that they are independent samples from the same
population) while trec disagrees by 2.5%, a significant sys-
tematic error. While random error for the trec labels is dif-
ficult to quantify, we may infer from this bias estimate and
the disagreement rate that trec label noise is smaller than,
and positively correlated with, SpamOrHam label noise.

Adjudicated differential comparison may be used to com-
pare pairs of labelings. But the “correct labels” are unknown,
so instead we use a third independent labeling, or a live ad-
judicator, as a surrogate. Provided the third labeling is in-
dependent and yields the correct label more often than not,
we may conclude that, of the labelings being compared, the
one that agrees with the third more often better approxi-
mates truth. A sign test evaluates the overall significance
of the comparison result. Adjudicated differential compari-
son may be used to compare and rank labelings, but offers
no quantitative estimate of the error rates of the labelings
being compared or, for that matter, of the adjudication la-
beling. Table 7 illustrates the result of adjudicated differ-
ential comparison among the trec labelings; demonstrating
formally our observation that the trec labels are more accu-
rate, while the SpamOrHam labelings are statistically indis-
tinguishable.

8. RANKING FILTER PERFORMANCE

While the ultimate goal of this work is to accurately es-
timate filter performance using standard measures, we first
consider the problem of ranking filters. A ranking is consid-
ered good to the extent that it orders filters consistently with
the standard measures, without concern for quantitative es-
timates. Kendall’s 7 rank correlation is commonly used to
compare rankings. If ¢ is the true ranking of filters according
to some measure, t1and {» are approximations, ¢is closer to
the true ranking than 2 if 7(t,%1) < 7(t,%2), but rank cor-
relation gives no indication whether the difference between
t and fl, or between ¢ and fg, or between t1and #s repre-
sent chance or significant differences. To this end, instead of
7(t, f) we report the proportion of inversions between t and
t, as well as the proportion of significant inversions and the
power of the estimate t. An inversion between filters f1 and
f2 occurs if f1 > fo in t while fi < fz2 in t. An inversion is
significant if a statistical test determines that fi < fo in
(p < ), for some small a. The power of { is the fraction of
pairs fi < f2 such that p < a. A good ranking would yield
high power, and low significant inversions when compared
to the true ranking. If the proportion of significant inver-
sions is less than «, we cannot reject the null hypothesis that
the difference is due to chance. Unless otherwise stated, we
assume o = 0.05.

Table 8 shows the rankings of 17 subject filters (described
in table 5), ranked by tournament using threshold-adjusted
differential comparison using each of the three labels for ad-
judication. Due to space limitations, we include statistical
p-values for only one ranking, and then only for the differ-
ences between adjacent filters in the ranking (e.g., in the
adj column, osbfm<watlm (p < 0.03)). The power of the
three rankings is given in the bottom row (e.g., the adj rank-
ing has power 0.88 because 122 of the 136 pairings yield a
significant difference). None of the inversions between any
pair of rankings is significant (p < 0.05) according to either
of the rankings.

9. QUANTIFYING FILTER PERFORMANCE

We first consider the problem of measuring the filters’
threshold adjusted error rates that were used for ranking in
the previous section. Later, we consider the TREC mea-
sures. Table 9 estimates threshold adjusted error rates, us-
ing adj and trec, respectively, as ground truth. We have not



filter error (95% c.l.)

filter adj labels trec labels
tft1-0.5 6.76 (6.61 - 6.91 1.82 (1.71 - 1.93
logbagfm 6.88 (6.70 - 7.07) 2.08 (1.99 - 2.19
Irslow 6.90 (6.71 - 7.10) 2.13 (2.03 - 2.23

) )
) )
) )
dmem  6.92 ) )
logbagm 6.92 ) )
logbagf  6.95 ) )
watlm  6.96 ) )
osbfm 7.07 (6.91 - 7.24) 2.22 (2.11 - 2.33)
bogom 7.09 (6.91 - 7.28)  2.49 (2.39 - 2.60)
) )

) )

) )

) )

) )

) )

) )

) )

( (
( (
(6.72 - 7.12 (
( (
( (
( (
E E
dmc  7.26 (7.08-7.44) 2.75 (2.63 - 2.87
( (
( (
( (
( (
( (
( (
( (

6.76 - 7.08
6.77 - 7.13
6.80 - 7.14

2.07
2.10
2.16
2.18

1.98 - 2.18
2.00 - 2.20
2.05 - 2.27
2.09 - 2.28

bogo 7.35 (7.18 - 7.52) 2.88 (2.76 - 3.01
watl 8.30 (8.12 - 8.48
nobs 8.36 (8.17 - 8.54
bayes 8.64 (8.44 - 8.83
nobsm 8.79 (8.59 - 9.00
bayesm  8.83 (8.64 - 9.02
tftl 9.71 (9.50 - 9.94

4.27 (4.14 - 4.39
4.14 (3.99 - 4.30
4.62 (4.48 - 4.76
4.70 (4.58 - 4.83
4.84 (4.69 - 5.00
5.99 (5.79 - 6.19

Table 9: Threshold adjusted error estimates using
trec and adj labels as ground truth.

formally computed the power of the rankings resulting from
these estimates; however, we may conclude from the overlap-
ping confidence intervals of all but two adjacent filters, the
power is, as expected, much lower than that achieved using
differential comparison. That said, there are no significant
inversions between the rankings. The error rates are, as pre-
dicted, substantially higher using the adj labels. For both
labelings, the estimated filter error rates are comparable to
known errors in the labels of 2.7% and 5.2%, respectively.
The best we can determine from these results is that tft1-
0.5, for example, likely has a true error rate between about
0.9% and 3.6%.

We can do better. A differential comparison between tft1-
0.5 and the trec labels (adjudicated using adj) shows tft1-
0.5 to be more accurate (p < 0.003). So the trec labeling
serves better as an upper bound on the filter’s error rate
than as ground truth. And if tft1-0.5 better approximates
truth, why not use its results as ground truth? One possible
objection is that results may be biased in favor of similar
filters, and against dissimilar ones. One way to reduce bias
is use a committee of filters to create the labels. Lynam and
Cormack [20] have shown that filter fusion can be expected
to outperform any single filter, even when the performance
of the filters varies by several orders of magnitude (although
we know in this case from evaluation using existing labels,
that none of the filters is terrible). The best reported fu-
sion method first adjusts the scores to estimate log-odds,
and then combines the scores with on-line logistic regres-
sion. The log-odds adjustment replaces the score s; for the
it" message by

log {j|s; < s;andlabel; = spam}|
[{j|s; > siandlabel; = ham}| )

The resulting scores, one per filter, comprise the input fea-
ture vector for adaptive logistic regression. We applied this
technique, and also performed threshold adjustment on the
result so that fpr = fnr = LAM. The categorical results of
this effort were used to form the pseudo-gold standard Imns.

Adjudicated using adj, a differential comparison fails to

LAM(%) (95% c.l.)

filter Imns labels trec labels
tft1-0.5 0.85 (0.79 - 0.91) 1.82 (1.71 - 1.93)
dmcm 1.23 (1.15 - 1.31)  2.07 (1.98 - 2.18)
logbagfm 1.23 (1.16 - 1.30) 2.08 (1.99 - 2.19)
Irslow 1.26 (1.18 - 1.34)  2.13 (2.03 - 2.23)
watlm 1.30 (1.23 - 1.38) 2.18 (2.09 - 2.28)
logbagm 1.31 (1.24 - 1.39) 2.10 (2.00 - 2.20)
logbagf 1.35 (1.26 - 1.43) 2.16 (2.05 - 2.27)
osbfm 1.50 (1.41 - 1.59) 2.22 (2.11 - 2.33)
bogom 1.65 (1.56 - 1.75)  2.49 (2.39 - 2.60)
dmc 1.79 (1.70 - 1.88) 2.75 (2.63 - 2.87)
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

bogo 2.01 (1.91 - 2.12) 2.88 (2.76 - 3.01
nobs 3.36 (3.22 - 3.50) 4.14 (3.99 - 4.30
bayes 3.60 (3.48 - 3.73) 4.62 (4.48 - 4.76
watl 3.61 (3.49 - 3.72) 4.27 (4.14 - 4.39

nobsm 3.87
bayesm  3.88
tftl 5.37

3.75 - 4.00
3.75 - 4.01
5.19 - 5.55

4.70
4.84
5.99

4.58 - 4.83
4.69 - 5.00
5.79 - 6.19

Table 10: Logistic average misclassification esti-
mates using lmns and trec labels as ground truth.

show a significant difference between tft1-0.5 and Imns (p <
0.8). Adjudicated using trec, lmns is clearly superior (p ~
0.000). The ranking yielded by lmns shows no significant in-

versions from those reported above. Table 11 reports threshold-

adjusted error using lmns as ground truth, and also reports
(1-AUC)(%). We note that the error reported for tft1-0.5
is at the low end of the range we guessed based on mea-
surements using the trec and adj labels. The AUC measures
appear reasonable — the noise-tolerant methods do much bet-
ter than the others, but still not as well as the others when
they are trained and evaluated on the trec labels. In fact,
the AUC measures are remarkably similar to those reported
by Sculley and Cormack [25], using synthetic noise.

For comparison, AUC measures using trec and adj ground
truth are presented in table 12. While the larger magnitude
of the estimates is to be expected, the difference in score and
ranking of tft1-0.5 is remarkable. Using trec or nat labels,
its performance appears mediocre, whereas by every other
measure it is the best by a substantial margin. LAM scores,
on the other hand, are uniformly higher with respect to the
trec labels, and there are no significant inversions (see table
13).

The same method was used to prepare new ground-truth
labels for the CEAS dataset, albeit with fewer filters. Fig-
ure 14 presents the AUC results, while table 15 presents
the LAM results using as ground truth the original CEAS
labels, as well as new labels constructed by fusion. The orig-
inal values and the substantial improvement of all scores are
consistent with high random error in the original labels —
comparable to the level in the TREC dataset — which is
abated in the new labels.

10. DISCUSSION AND CONCLUSION

A fully automatic method fuses the results of candidate
filters to yield a pseudo-gold labeling that is used as ground
truth in evaluating email spam filters. The pseudo-gold la-
bels exhibit a lower error rate than labels obtained from
natural sources including user labels and exhaustive adjudi-
cation by experts. Using the labeling as ground truth for



error measure (95% c.l.)

(1-AUC)(%) (95% c.l.)

filter

trec labels

nat labels

logbagm

0.14 (0.13 - 0.15

3.49 (3.37 - 3.63

filter thresh. ad]. (1-AUC) (%)
tft1-0.5 0.85 (0.79 - 0.91) 0.041 (0.034 - 0.051)
dmem  1.23 (1.15 - 1.31)  0.074 (0.062 - 0.087)
logbagfm 1.23 (1.16 - 1.30) 0.051 (0.046 - 0.056)
Ieslow  1.26 (118 - 1.34)  0.052 (0.047 - 0.057)
watlm  1.30 (1.23 - 1.38)  0.056 (0.051 - 0.062)
logbagm 131 (1.24 - 1.39) 0.057 (0.052 - 0.063)
logbagf  1.35 (1.26 - 1.43)  0.057 (0.051 - 0.062)
osbfm  1.50 (1.41- 1.59) 0.096 (0.086 - 0.107)
bogom  1.65 (1.56 - 1.75)  0.10 (0.09 - 0.11)
dmec 179 (.70 - 1.88)  0.24 (0.2 - 0.26)
bogo 2.0l (L91-212)  0.21 (0.19 - 0.23)
nobs  3.36 (3.22-3.50)  0.45 (0.42 - 0.48)
bayes  3.60 (3.48 - 3.73)  0.52 (0.50 - 0.56)
watl  3.61 (349-3.72)  0.90 (0.85 - 0.96)
nobsm  3.87 (3.75 - 4.00)  0.69 (0.65 - 0.74)
bayesm  3.88 (3.75 - 4.01)  0.63 (0.59 - 0.67)
tftl 537 (5.19 - 5.55) 1.5 (1.4 - 1.6)

Table 11: Threshold adjusted error and ROC area
estimates using pseudo-gold labels as ground truth.

evaluation results in lower estimated filter error rates across
the board, according to standard measures. This effect is
consistent with the hypothesis that the these new estimates
are more precise in absolute terms. There is some possibility
that the pseudo-gold labels to some extent represent “group
think” of the subject filters, which all rely exclusively on the
text of the message for classification, albeit using different
algorithms and feature engineering. This concern is simi-
lar to that raised with respect to the pooling method for IR
evaluation. This concern applies mainly to the magnitude of
reported error rates, as differential comparison is insensitive
to it.

Differential comparison, which requires some adjudica-
tion, may be used to demonstrate that the pseudo-gold stan-
dard has a lower error rate than other available labels. And,
were a radical new filter to discover errors in the labels, this
situation could be discoverable by differential comparison.
It is important to note that differential comparison does not
require that the adjudicator be more accurate than the la-
bels, just that the adjudicator be more accurate than chance.
Differential comparison may also be used to rank filters di-
rectly; the rankings achieved by tournament ranking, even
with noisy adjudication, are quite powerful, although they
yield no quantitative estimate of filter error rates.

We call into question Sculley and Cormack’s claim [25]
that spam filters perform more poorly with natural than
with random training label noise. Our results are consistent
with the hypothesis that the filters perform about as well on
both, and that the reported results for the best-performing
filter — SVM with a low C parameter — were substantially
confounded by errors in the evaluation labels. Other ap-
proaches designed to mitigate label noise, including slowed
learning rates and bagging, generally improved performance
as expected. Our overall conclusion is that noise-tolerant
spam filters perform not quite as well as the best filters with
clean data, but not nearly as poorly as previously reported.

) )
) 3.40 (3.25 - 3.55)
) 3.33 (3.22 - 3.45)
) 3.53 (3.38 - 3.67)
) 3.35 (3.24 - 3.48)
) 4.04 (3.92 - 4.17)
) 3.90 (3.77 - 4.04)
bogom  0.30 (0.29 - 0.32) 3.9 (3.86 - 4.13)
t£61-0.5  0.30 (0.27 - 0.34)  4.02 (3.88 - 4.17)
) )
) )
) )
) )
) )
) )
) )
) )

logbagfm 0.14 ( (
( (
( (
( (
( (
( (
E %

bogo  0.53 (0.49 - 0.57) 4.51 (4.35 - 4.67
( (
( (
( (
( (
( (
( (
( (

Irslow 0.14
watlm 0.15
logbagf 0.15
dmcm 0.22

osbfm 0.24

0.13 - 0.15
0.13 - 0.15
0.14 - 0.16
0.14 - 0.16
0.20 - 0.24
0.22 - 0.26

dmc 0.59 (0.55 - 0.63) 4.33 (4.18 - 4.50
nobs 0.74 (0.70 - 0.78
bayes 0.84 (0.81 - 0.88
bayesm  1.02 (0.97 - 1.08
nobsm 1.11 (1.06 - 1.17
watl 1.25 (1.19 - 1.32
tftl 2.06 (1.96 - 2.15

4.26 (4.11 - 4.41
4.45 (4.32 - 4.59
4.75 (4.59 - 4.93
4.69 (4.53 - 4.85
4.83 (4.68 - 4.98
5.56 (5.41 - 5.71

Table 12: ROC area estimates using trec and nat
labels as ground truth.
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