# **Spam Filters:**

Do they work? Can you prove it?

Gordon V. Cormack

15 February, 2006





## Why Standardized Evaluation?

### To answer questions!

Is spam filtering a viable approach?

What are the risks, costs, and benefits of filter use?

Which spam filter should I use?

How can I make a better spam filter?

What's the alternative?

**Testimonials** 

Uncontrolled, unrepeatable, statistically bogus tests

Warm, fuzzy feelings



### There's no Perfect Test

### But a standardized test should

Model real filter usage as closely as possible

Evaluate the filter on criteria that reflect its effectiveness for its intended purpose

Eliminate uncontrolled differences

Be repeatable

Yield statistically meaningful results

Future tests will

Challenge assumptions in the current test



### TREC – Text Retrieval Conference

Sponsored by, held at

NIST – National Institute for Standards & Technology

http://trec.nist.gov

### Goals

To increase the availability of appropriate evaluation techniques for use by industry and academia, including the deployment of new evaluation techniques more applicable to current systems.

#### **Format**

Participants do experiments in one or more tracks



## What is Spam?

### TREC definition

Unsolicited, unwanted email that was sent indiscriminately, directly or indirectly, by a sender having no current relationship with the recipient.

Depends on sender/receiver relationship

*Not* "whatever the user thinks is spam."



# Spam Filter Usage



Misclassified Spam

Filter Classifies Email

Human addressee

Triage on ham File

Reads ham

Occasionally searches for misclassified ham

Report misclassified email to filter



## Spam Filter Evaluation

```
Simulate (replay) incoming email stream
```

single stream (for now)

chronological order

full email message with original headers

Simulate idealized user's behaviour

reports all misclassifications immediately

spam in ham file (spam misclassification, false negative)

ham in spam file (ham misclassification, false positive)

Capture filter results

Analyze captured results



# Simulating Email Stream

Identify user

Secure user's permission (tacit or explicit)

this is the hard part

User's sensitivities

Sender's sensitivities

3<sup>rd</sup> Parties sensitivities

Privacy legislation & ethics

Capture email exactly as delivered



## Simulating Idealized User

### Capture

Filter result for each message (ham/spam)

User's reports of misclassified ham or spam

But Real Users are not *Ideal* 

err and are inconsistent

slow and haphazard in reporting misclassification

Real User involved in pilot evaluation

vets disagreements between user and filter

Gold Standard ham/spam judgement



### Standardized Filter Interface

## Filter implements (Linux or Windows) commands

#### initialize

create necessary files & servers (cold start)

### classify filename

read *filename* which contains exactly 1 email message write one line of output:

classification score auxiliary\_file

**train** *judgement filename classification* take note of gold-standard *judgement* 

#### finalize

clean up: kill servers, remove files



### Tool Kit for Filter Evaluation

#### initialize

for each judgement, filename in corpus

**classify** *filename* > *classification*, *score* 

train judgement filename classification

record judgement, filename, classification, score

#### finalize

[later]

analyze & summarize recorded judgements



# Participant Filters

| Group                                                 | Filter Prefixes                        |
|-------------------------------------------------------|----------------------------------------|
| Beijing University of Posts and Telecommunications    | kidSPAM1, kidSPAM2, kidSPAM3, kidSPAM4 |
| Chinese Academy of Sciences (ICT)                     | ICTSPAM1, ICTSPAM2, ICTSPAM3, ICTSPAM4 |
| Dalhousie University                                  | dalSPAM1, dalSPAM2, dalSPAM3, dalSPAM4 |
| IBM Research (Segal)                                  | 621SPAM1, 621SPAM2, 621SPAM3           |
| Indiana University                                    | indSPAM1, indSPAM2, indSPAM3, indSPAM4 |
| Jozef Stefan Institute                                | ijsSPAM1, ijsSPAM2, ijsSPAM3, ijsSPAM4 |
| Laird Breyer                                          | lbSPAM1, lbSPAM2, lbSPAM3, lbSPAM4     |
| Massey University                                     | tamSPAM1, tamSPAM2, tamSPAM3, tamSPAM4 |
| Mitsubishi Electric Research Labs (CRM-114)           | crmSPAM1, crmSPAM2, crmSPAM3, crmSPAM4 |
| Pontificia Universidade Catolica Do Rio Grande Do Sul | pucSPAM1, pucSPAM2, pucSPAM3           |
| Universite Paris-Sud                                  | azeSPAM1, azeSPAM2                     |
| York University                                       | yorSPAM1, yorSPAM2, yorSPAM3, yorSPAM4 |



# Non-participant Filters

| Filter       | Run Prefix | Configuration               |
|--------------|------------|-----------------------------|
| Bogofilter   | bogofilter | 0.92.2                      |
| DSPAM        | dspam-tum  | 3.4.9, train-until-mature   |
|              | dspam-toe  | 3.4.9, train-on-errors      |
|              | dspam-teft | 3.4.9, train-on-everything  |
| Donfile      | nonflo     | 0.00.0                      |
| Popfile      | popfile    | 0.22.2                      |
| Spamassassin | spamasasb  | 3.0.2, Bayes component only |
|              | 1 1        |                             |
|              | spamasasb  | 3.0.2, Bayes component only |



# Public Corpus & Subsets

### Public Corpora

|                  | Ham   | Spam  | Total |
|------------------|-------|-------|-------|
| trec05p-1/full   | 39399 | 52790 | 92189 |
| trec05p-1/ham25  | 9751  | 52790 | 62541 |
| trec05p-1/ham50  | 19586 | 52790 | 72376 |
| trec05p-1/spam25 | 39399 | 13179 | 52578 |
| trec05p-1/spam50 | 39399 | 26283 | 65682 |



## Analysis – Binary Classification

Gold Standard Judgement

|                |      | ham | spam |
|----------------|------|-----|------|
| Filter         | ham  | а   | b    |
| Classification | spam | С   | d    |

a: ham (correctly classified)

b: spam misclassification

c: ham misclassification

d: spam (correctly classified)

[true negative]

[false negative]

[false positive]

[true positive]

c/(a+c): ham misclassification rate (hm%)

b/(b+d): spam misclassification rate (sm%)





## Logistic Average Misc%

*logit* transforms probability to log odds

odds 
$$x = x / (100\% - x)$$

logit x = log (odds x)

range  $-\infty$  ..  $\infty$  with symmetric algebraic properties

0.1% - 0.01% equals 99.9% - 99.99%

nearly equals 1% - 0.1%, 99.99% - 99.999% etc.

i.e. each represents a *tenfold* performance difference

logistic average misclassification

 $lam\% = logit^{-1} (logit hm\% + logit sm\%)/2$ 

improvements in lm%, hm% rewarded equally

(similar to geometric mean in Robust Track)



# Classification – Public Corpus

| Run        | Hm%   | Sm%   | Lam%  |
|------------|-------|-------|-------|
| bogofilter | 0.01  | 10.47 | 0.30  |
| ijsSPAM2   | 0.23  | 0.95  | 0.47  |
| spamprobe  | 0.15  | 2.11  | 0.57  |
| spamasas-b | 0.25  | 1.29  | 0.57  |
| crmSPAM3   | 2.56  | 0.15  | 0.63  |
| 621SPAM1   | 2.38  | 0.20  | 0.69  |
| lbSPAM2    | 0.51  | 0.93  | 0.69  |
| popfile    | 0.92  | 1.26  | 0.94  |
| dspam-toe  | 1.04  | 0.99  | 1.01  |
| tamSPAM1   | 0.26  | 4.10  | 1.05  |
| yorSPAM2   | 0.92  | 1.74  | 1.27  |
| indSPAM3   | 1.09  | 7.66  | 2.93  |
| kidSPAM1   | 0.91  | 9.40  | 2.99  |
| dalSPAM4   | 2.69  | 4.50  | 3.49  |
| pucSPAM2   | 3.35  | 5.00  | 4.10  |
| ICTSPAM2   | 8.33  | 8.03  | 8.18  |
| azeSPAM1   | 64.84 | 4.57  | 22.92 |



# Analysis – Ham/Spam Tradeoff

Most filters compute spamminess

if *spamminess* > *threshold* then classify as spam else classify as ham

threshold value is arbitrary

higher threshold =

fewer ham misclassifications more spam misclassifications

ROC (Receiver Operating Characteristic) Curve

vary threshold, plot ham misc. vs. spam misc.

Area under curve approaches 100% (perfect filter)

We report (1-ROCA)% [degree of imperfection]



# ROC Curves – Public Corpus





# Measures – Public Corpus

| Run        | (1-ROCA)% | Rank | Sm% @ Hm%=0.1 | Rank | Lam% | Rank |
|------------|-----------|------|---------------|------|------|------|
| ijsSPAM2   | 0.02      | 1    | 1.8           | 1    | 0.5  | 2    |
| lbSPAM2    | 0.04      | 2    | 5.2           | 7    | 0.7  | 7    |
| crmSPAM3   | 0.04      | 3    | 2.6           | 3    | 0.6  | 5    |
| 621SPAM1   | 0.04      | 4    | 3.6           | 6    | 0.7  | 6    |
| bogofilter | 0.05      | 5    | 3.4           | 5    | 0.3  | 1    |
| spamasas-b | 0.06      | 6    | 2.6           | 2    | 0.6  | 3    |
| spamprobe  | 0.06      | 7    | 2.8           | 4    | 0.6  | 4    |
| tamSPAM1   | 0.16      | 8    | 6.9           | 8    | 1.1  | 10   |
| popfile    | 0.33      | 9    | 7.4           | 9    | 0.9  | 8    |
| yorSPAM2   | 0.46      | 10   | 34.2          | 10   | 1.3  | 11   |
| dspam-toe  | 0.77      | 11   | 88.8          | 15   | 1.0  | 9    |
| dalSPAM4   | 1.37      | 12   | 76.6          | 13   | 3.5  | 14   |
| kidSPAM1   | 1.46      | 13   | 34.9          | 11   | 3.0  | 13   |
| pucSPAM2   | 1.97      | 14   | 51.3          | 12   | 4.1  | 15   |
| ICTSPAM2   | 2.64      | 15   | 79.5          | 14   | 8.2  | 16   |
| indSPAM3   | 2.82      | 16   | 97.4          | 16   | 2.9  | 12   |
| azeSPAM1   | 28.89     | 17   | 99.5          | 17   | 22.9 | 17   |



# Rank by Statistic & Corpus

lam%

|          | Aggregate trec05p-1/full |      |      | full |      | Mr. X |      |      | S. B. | Т. М. |      |      |      |      |
|----------|--------------------------|------|------|------|------|-------|------|------|-------|-------|------|------|------|------|
| Filters  | ROCA                     | h=.1 | lam% | ROCA | h=.1 | lam%  | ROCA | h=.1 | lam%  | ROCA  | h=.1 | lam% | ROCA | h=.1 |
| ijsSPAM2 | 1                        | 3    | 3    | 1    | 1    | 2     | 7    | 12   | 11    | 2     | 3    | 5    | 1    | 6    |
| ijsSPAM1 | 2                        | 2    | 3    | 2    | 2    | 4     | 7    | 14   | 13    | 3     | 6    | 17   | 2    | 5    |
| ijsSPAM4 | 3                        | 6    | 6    | 4    | 5    | 8     | 5    | 10   | 16    | 5     | 7    | 15   | 5    | 8    |
| ijsSPAM3 | 4                        | 7    | 12   | 3    | 2    | 5     | 2    | 2    | 8     | 6     | 10   | 22   | 6    | 10   |
| crmSPAM2 | 5                        | 1    | 1    | 14   | 11   | 16    | 3    | 11   | 5     | 17    | 13   | 19   | 4    | 2    |

g.

crmSPAM3

crmSPAM4

1bSPAM2

1bspam1

tamSPAM1

spamprobe

tamSPAM2

bogofilter

spamasas-b

1bSPAM3

crmSPAM1

1bSPAM4

yorSPAM2

spamasas-x

kidSPAM1

dspam-toe

621SPAM1

621SPAM3

yorSPAM4

dspam-tum



### Confidence Intervals

95% Confidence Limits – see notebook appendix

Exact binomial probabilities

hm%, sm%

Logistic Regression, parametric model

Standard error (S.E.) for logit hm%, logit sm%

95% confidence interval  $\pm$  1.96 S.E.

agrees well with binomial estimate

lam% S.E. = root-mean-square hm% S.E, sm% S.E.

S.E. for learning-curve slope and intercept

Bootstrap (100 resampled pseudo-corpora)

S.E. for logit (1-ROCA)%



## Learning Curves

### Cumulative

Report summary statistic e.g. (1-ROCA)%

for all prefixes of the corpus

Reaches asymptote if filter performance constant

Smooths variations in filter performance (long decay)

#### Instantaneous

Estimate hm% and sm% at any given time

piecewise approximation

logistic regression

logit hm% = a + bx

best a and b where x is number of messages classified so far

No suitable estimate (yet) for summary stats

#### Waterloo Cumulative ROC Learning azeSPAM1full indSPAM3full ICTSPAM2full 50.00 pucSPAM2full kidSPAM1full dalSPAM4full dspam-toe.full yorSPAM2full popfile.full tamSPAM1full 10.00 spamprobe.full (1-ROCA)% (logit scale) spamasas-b.full bogofilter.full 621SPAM1full crmSPAM3full IbSPAM2ful iisSPAM2fu 1.00 0.10 0.01 10000 50000 60000 20000 30000 40000 70000 80000 90000 100000 Messages







### Genre Classification

Not all types of ham are equal!

Some more likely misclassified

higher likelihood of ending up in spam filter

Some more likely missed if filtered

can be retrieved from spam file

Some more valuable

consequences of non-receipt vary dramatically

Overall downside risk depends on all these factors

Spam can similarly be classified



# Genre (S.B. Corpus)

|                  | Misclassified Spam (of 775 spams) |      |            |          |     |       | Misclassified Ham (of 6231 hams) |           |            |           |          |      |            |          |       |
|------------------|-----------------------------------|------|------------|----------|-----|-------|----------------------------------|-----------|------------|-----------|----------|------|------------|----------|-------|
|                  | Automated                         | List | Newsletter | Phishing | Sex | Virus | Total                            | Automated | Commercial | Encrypted | Frequent | List | Newsletter | Personal | Total |
| ijsSPAM2         | 3                                 | 10   | 4          | 3        | 69  | 2     | 91                               | 4         | 3          | 0         | 0        | 2    | 1          | 0        | 10    |
| lbSPAM2          | 3                                 | 47   | 12         | 6        | 178 | 11    | 257                              | 1         | 0          | 0         | 0        | 1    | 0          | 0        | 2     |
| ${\tt crmSPAM3}$ | 2                                 | 7    | 10         | 1        | 37  | 2     | 59                               | 4         | 6          | 0         | 1        | 5    | 2          | 3        | 21    |
| 621SPAM1         | 1                                 | 6    | 7          | O        | 10  | 17    | 41                               | 15        | 20         | 0         | 13       | 14   | 8          | 28       | 98    |
| ${\rm tamSPAM1}$ | 3                                 | 40   | 14         | 3        | 147 | 6     | 213                              | 4         | 1          | 0         | 0        | 3    | 0          | 1        | 9     |
| ${\it yorSPAM2}$ | 9                                 | 11   | 26         | 3        | 114 | 19    | 182                              | 1         | 3          | 0         | 0        | 2    | 3          | 0        | 9     |
| ${\rm dalSPAM4}$ | 11                                | 23   | 8          | 8        | 249 | 18    | 317                              | 4         | 11         | 0         | 22       | 53   | 10         | 18       | 118   |
| ${\rm kidSPAM1}$ | 3                                 | 8    | 12         | 4        | 74  | 4     | 105                              | 5         | 14         | 1         | 121      | 20   | 2          | 47       | 210   |
| ${\tt pucSPAM2}$ | 5                                 | 28   | 15         | 2        | 264 | 3     | 317                              | 4         | 3          | 9         | 100      | 15   | 2          | 21       | 154   |
| ICTSPAM2         | 8                                 | 12   | 17         | 7        | 68  | 10    | $\boldsymbol{122}$               | 4         | 3          | 2         | 8        | 30   | 6          | 14       | 67    |
| ind SPAM3        | 3                                 | 22   | 17         | 7        | 220 | 18    | 287                              | 3         | 7          | 0         | 11       | 27   | 60         | 6        | 114   |
| azeSPAM1         | 0                                 | 16   | 6          | 6        | 43  | 0     | 71                               | 70        | 51         | 126       | 808      | 1938 | 255        | 360      | 3608  |



### Conclusions

Spam filters work

still room for improvement

Public corpora work

finding sources a continuing challenge

Private corpora work

but we need more rigorous specifications and limits burden on volunteers

Spam Filter Test Kit & Methodology

generally applicable beyond TREC

collaborative filtering, different (or no) user feedback, ...

### **CEAS 2006**

### **Third Conference on Email and Anti-Spam**

27-28 July, 2006 Mountain View, California

http://www.ceas.cc/

submissions: 23 March, 2006





### Further Resources

### TREC - trec.nist.gov

Call for participation (TREC 2006)

Description of tracks

Past proceedings

### Spam Track – plg.uwaterloo.ca/~gvcormac/spam

Guidelines

Test jig, analysis tools, sample filters

Linux, Unix, or Windows (with Cygwin tools)

### Methodology -

plg.uwaterloo.ca/~gvcormac/spamcormack