
A Larger Decidable Semiunification Problem

Brad Lushman
University of Waterloo

bmlushma@plg.uwaterloo.ca

Gordon V. Cormack
University of Waterloo

gvcormac@uwaterloo.ca

ABSTRACT
We present a graph-theoretic framework in which to
study instances of the semiunification problem (SUP),
which is known to be undecidable, but has several known
and important decidable subsets. One such subset, the
acyclic semiunification problem (ASUP), has proved use-
ful in the study of polymorphic type inference. We
present graph-theoretic criteria in our framework that
exactly characterize the ASUP acyclicity constraint. We
then use our framework to find a decidable subset of
SUP (which we call R-ASUP), which has a more natu-
ral description than ASUP, and strictly contains it.

1. INTRODUCTION
Given a term algebra comprising a set F of functors
with given arities and a set of variables, unification is
the problem of determining, for a given set of term equa-
tions, whether there is a substitution on the variables in
the equations that satisfies them all. Formally, we are
given a set {τi = µi}Ni=1 of term equations, and we seek
a substitution S such that, for all i, τiS = µiS.

Semiunification is a related problem, in which the set
of term equations becomes a set of term inequations
{τi ≤ µi}Ni=1, and is defined formally in Section 3. Here,
a solution requires only that each µi be a substitution
instance of the corresponding τi, rather than an exact
match.

While unification is known to be solvable in linear time,
semiunification in general is undecidable. A subset known
as the acyclic semiunification problem is known to be
solvable (though DEXPTIME-complete), and has proved
useful in at least one application domain. In this pa-
per, we introduce another subproblem, the R-acyclic

semiunification problem, which is more natural than
ASUP, strictly larger, and still decidable. Moreover, it
produces quadratically smaller problem instances than
ASUP in the domain of typing algorithms, and we con-
jecture that it may be similarly advantageous in other
contexts.

Apart from its connections to polymorphic type infer-
ence, SUP is an interesting problem, itself worthy of
study. Applications of SUP can be found in fields such
as logic programming [2], computational linguistics [3],
and program analysis [4]; for this reason, we present the
results in this paper in an application-independent way,
so that they may be readily adopted to other application
domains.

2. TERMS, VARIABLES, AND SUBSTI-
TUTIONS

In this section, we define some basic notions related to
terms, variables and substitutions, which we will need
throughout the remainder of this paper.

Definition 1 (Vars). Given a term τ , we denote
by Vars(τ) the set of variables occurring in τ :

Vars(α) = {α}

Vars(f(τ1, . . . , τn)) =

n⋃
i=1

Vars(τi) (where arity(f) = n)

Definition 2 (Path). For a term algebra compris-
ing a set F of functors, a path (denoted by Σ) is a string
over the set

{fi|f ∈ F, 1 ≤ i ≤ arity(f)}

that acts as a partial function on terms as follows:

ε(τ) = τ for all τ

(Σfi)(f(τ1, . . . , τarity(f))) = Σ(τi) (1 ≤ i ≤ arity(f)),

where τ ranges over terms and ε is the empty path.

Definition 3 (Substitution). Given a term al-
gebra T comprising a set F of functors with associated



arities, and a set X of variables, a substitution is a map
σ : X → T which is an identity map on all but finitely
many variables. The domain of a substitution σ, de-
noted dom(σ), is the set {x ∈ X | σ(x) 6= x} of variables
on which σ is not an identity map. The notation [τ/α]
denotes a substitution σ for which dom(σ) = {α} and
σ(α) = τ . Substitutions are often written postfix, so that
ασ has the same meaning as σ(α). Substitutions extend
naturally to maps from terms to terms by the following
rule:

f(τ1, . . . , τn)σ ≡ f(τ1σ, . . . , τnσ) ,

where f is a functor. Given terms τ and µ, µ is called a
substitution instance of τ if there exists a substitution
σ such that τσ = µ.

We include for completeness the definition of the unifi-
cation problem, of which SUP is a generalization.

Definition 4 (Unification). Within a given term
algebra, an instance of the unification problem is a set
Γ = {τi = µi}Ni=1 of term equations. A substitution σ is
a solution of the instance Γ if, for all i, τiσ = µiσ.

The unification problem was first formulated and solved
by Robinson [21]. Linear time solutions have since been
found [16, 19].

An important property of Robinson’s algorithm (though
it is by no means unique in this regard) is that it al-
ways outputs a most general unifier whenever the term
equations in the problem instance are satisfiable. In
particular, if the algorithm outputs a substitution σ0 as
a solution for a unification instance Γ, and if σ is any
other solution of Γ, then there exists a substitution σ′

such that σ = σ′ ◦ σ0.

3. SEMIUNIFICATION AND THE REDEX
PROCEDURE

The semiunification problem (SUP) is defined below:

Definition 5 (SUP). An instance of SUP is a set
{τi ≤ µi}Ni=1 of inequalities in some term algebra. A
substitution σ is a solution of SUP if there exist substi-
tutions σ1, . . . , σN such that

τ1σσ1 = µ1σ

· · ·
τNσσN = µNσ

In particular, semiunification differs from ordinary uni-
fication in that we may perform additional substitutions
on the left-hand sides of the inequalities in order to make
them match the right-hand sides. In other words, σ is
a solution of the instance iff, after applying σ through-
out the instance, each right-hand side is a substitution
instance of the corresponding left-hand side.

Though it was widely believed to be decidable for years,
SUP is now known to be undecidable [11]. This re-
sult has formed the basis for other undecidability results
within SUP’s application domains [22]. Kfoury, Tiuryn,
and Urzyczyn [11] present a solution semi-procedure for
SUP, which we call the redex procedure (see Kfoury,
Tiuryn, and Urzyczyn [12] and Baaz [1] for alternative
solution semi-procedures). Our formulation of the redex
procedure is given in Figure 1.

Redex Procedure
Input: SUP instance Γ = {τi ≤ µi}Ni=1

Output: substitution σΓ that solves Γ

1. Set σ0 = [] and k = 0.

2. If µiσk is a substitution instance of τiσk for all i,
set σΓ = σk and terminate with success.

3. Perform one of the following steps:

(a) (Redex-I reduction)

Let Σ be a path and 1 ≤ i ≤ N be such that
Σ(µiσk) is a variable and Σ(τiσk) is not a
variable.

Set σk+1 = [Σ(τiσk)′/Σ(µiσk)] ◦ σk, where
Σ(τiσk)′ is Σ(τiσk) with all variables re-
named consistently to fresh variables.

(b) (Redex-II reduction)

Let Σ1 and Σ2 be paths, α a variable, and
1 ≤ i ≤ N be such that

Σ1(τiσk) = Σ2(τiσk) = α

and

Σ1(µiσk) 6= Σ2(µiσk) .

If Σ1(µiσk) and Σ2(µiσk) are not unifiable,
terminate with failure.

Else, let θ be the most general unifier of
Σ1(µiσk) and Σ2(µiσk), as output by Robin-
son’s unification algorithm, and set σk+1 =
θ ◦ σk.

(c) If neither of steps 3a and 3b is possible, then
there is a functor mismatch; terminate with
failure.

4. k := k + 1; go to step 2.

Figure 1: The redex procedure of Kfoury,
Tiuryn, and Urzyczyn.

The redex procedure has the property that it terminates
with a correct answer on all SUP instances that possess
a solution, and either returns an error or loops forever
on SUP instances that do not possess a solution [11].

The substitution output by the redex procedure (when
it terminates) is principal (or “most general”) in a spe-
cific sense, as described below [5]:



Theorem 1. Let Γ be a solvable SUP instance on
which the redex procedure terminates, and σ0 the sub-
stitution returned by the redex procedure. Let σ be any
other substitution that solves Γ. Then there is a substi-
tution σ′ such that, for any variable α occurring in Γ,
ασ = ασ0σ

′. In other words, when viewed as maps with
domains restricted to variables in Γ, we have σ = σ′◦σ0.

Proof. See Kfoury, Tiuryn, and Urzyczyn [11].

This result is slightly weaker than the corresponding
result for unification, in which we would have σ = σ′◦σ0,
without qualification [21].

4. ACYCLIC SEMIUNIFICATION
The subset of SUP known as the acyclic semiunification
problem (ASUP) was first presented by Kfoury, Tiuryn,
and Urzyczyn [12], and is defined as follows:

Definition 6 (LVars, RVars). For an inequality
τ ≤ µ, define

LVars(τ ≤ µ) = Vars(τ)

RVars(τ ≤ µ) = Vars(µ).

Definition 7 (Acyclic). An instance Γ of SUP
is acyclic if its inequalities can be arranged into m columns
such that the sets V0, . . . , Vm defined by

V0 =
⋃

v∈ col. 1

LVars(v)

· · ·

Vk =

 ⋃
v∈ col. k − 1

RVars(v)

⋃ ⋃
v∈ col. k

LVars(v)


· · ·

Vm =
⋃

v∈ col. m

RVars(v)

are pairwise disjoint.

For example, the instance

{α ≤ g(β), β ≤ f(γ, γ), f(α, δ) ≤ ε} ,

where f is a binary functor and g is a unary functor,
is acyclic—if we assign the first and third inequalities
to column 1, and the second to column 2, then we have
V0 = {α, δ}, V1 = {β, ε}, and V2 = {γ}, and these are
pairwise disjoint.

Definition 8 (ASUP). ASUP is the restriction of
SUP to acyclic problem instances.

ASUP is a decidable subset of SUP, and the redex pro-
cedure is known to terminate (with either success or
failure) on all instances of ASUP. Termination of the
redex procedure on ASUP instances forms the basis for
a well-known typing algorithm [13].

5. SUP INSTANCES AS GRAPHS
We now introduce a graph-theoretic framework in which
to reason about SUP instances, and give a characteriza-
tion of ASUP within this framework. We first need to
establish some terminology:

Definition 9 (Undirected path). Given a directed
graph G and vertices v1 and v2 in G, an undirected path
from v1 to v2 is a path from v1 to v2, in which we are
not required to follow the direction of the edges.

In other words, an undirected path is a one that exists
when we pretend that the underlying directed graph is
undirected. Ordinary (directed) paths may also be con-
sidered undirected. There are two notions of path length
associated with undirected paths on directed graphs:

Definition 10 (Unsigned, signed path length).

Given a directed graph G, with an undirected path π
joining vertices v1 and v2, the unsigned path length of
π, denoted ||π||, is the number of edges in π. The signed
path length of π, denoted |π|, is the length of π, where
each forward arrow (i.e., pointing away from v1 and to-
wards v2) counts for +1, and each reverse arrow (i.e.,
pointing towards v1 and away from v2) counts for −1.

The difference between unsigned and signed path length
is analogous to the distinction between displacement
and distance in physics. We also introduce the following
notation:

Definition 11. For a directed graph G containing
vertices v1 and v2,we write v1 → v2 (resp. v1 →U v2)
if there is a directed (resp. undirected) edge from v1 to
v2. We write v1 →∗ v2 (resp. v1 →∗U v2) if there is
a directed (resp. undirected) path from v1 to v2. We
write v1 →+ v2 (resp. v1 →+

U v2) if there is a directed
(resp. undirected) path of nonzero length from v1 to v2.
Finally, we write π : v1 →∗ v2 (and analogously for the
other cases) to indicate that π is a directed path from v1

to v2.

We define the graph of a SUP instance as follows:

Definition 12 (Graph of a SUP instance). Let
Γ = {τi ≤ µi}Ni=1 be an instance of SUP. Then the
graph of Γ, denoted G(Γ), is defined as follows:

• the inequalities τi ≤ µi are the vertices vi in G;

• vi → vj iff RVars(vi) ∩ LVars(vj) 6= ∅

For example, suppose we have the following SUP in-
stance Γ:

α ≤ f(β, γ) β ≤ δ γ ≤ ε η ≤ δ ζ ≤ f(η, γ) g(δ) ≤ θ ,



��
�
��*

HHH
HHj

��
�
��*

�
��
��
��
�
��*

H
HHHH

HHH
HHj

HHHHHj

β ≤ δ (v2)

η ≤ δ (v4)

α ≤ f(β, γ) (v1)

ζ ≤ f(η, γ) (v5)

γ ≤ ε (v3)
g(δ) ≤ θ (v6)

Figure 2: The graph of a SUP instance. The
symbols f and g denote, respectively, a binary
functor and a unary functor.

where f is a binary functor and g is a unary functor.
The graph G(Γ) of the instance is given in Figure 2. Let
the inequalities in the instance be labelled as vertices
v1, v2, v3, v4, v5, and v6, respectively. Then we see that
there are directed paths from v1 to v3 and v6, and also
from v5 to v3 and v6. On the other hand, there are two1

undirected paths from v3 to v6: one going through v1

and v2, and the other going through v5 and v4. Both
have unsigned length equal to 3, and signed length equal
to 1.

The following theorem establishes graph-theoretic crite-
ria that are necessary and sufficient for a SUP instance
to be an instance of ASUP:

Theorem 2. Let Γ = {τi ≤ µi}Ni=1 be an instance
of SUP. Then Γ is an acyclic instance of SUP iff the
following four symmetric conditions hold for G(Γ):

• for any given variables α1 and α2, all paths π :
v1 →∗U v2, such that α1 ∈ LVars(v1) and α2 ∈
LVars(v2), have the same signed length.

• for any given variables α1 and α2, all paths π :
v1 →∗U v2, such that α1 ∈ LVars(v1) and α2 ∈
RVars(v2), have the same signed length.

• for any given variables α1 and α2, all paths π :
v1 →∗U v2, such that α1 ∈ RVars(v1) and α2 ∈
LVars(v2), have the same signed length.

• for any given variables α1 and α2, all paths π :
v1 →∗U v2, such that α1 ∈ RVars(v1) and α2 ∈
RVars(v2), have the same signed length.

We begin with a brief outline of the proof, which is
somewhat lengthy:

Proof Sketch. The forward direction is a proof by
induction on ||π|| that |π| measures the difference in the
1In fact there are infinitely many undirected paths be-
tween any two distinct connected vertices; but all but
finitely many (in this case, all but two) of these will
involve backtracking over previously-traversed edges.

column assignments of two inequalities. The reverse
direction assigns columns to inequalities according to
the constraints provided by the structure of the graph—
namely that an inequality must have a column number
one less than its successors in the graph and one more
than its predecessors. We then show that this procedure
and the conditions of the theorem together guarantee
the disjointness of the resulting sets of variables.

The full proof is as follows:

Proof of Theorem 2. We begin with the forward
direction. Suppose Γ is an acyclic instance of SUP. Then
there is an arrangement of the inequalities in Γ into m
columns such that the following sets:

V0 =
⋃

v∈col. 1

LVars(v)

Vi =

 ⋃
v∈col. i

RVars(v)

⋃ ⋃
v∈col. i+ 1

LVars(v)


Vm =

⋃
v∈col. m

RVars(v)

are pairwise disjoint. Now, consider any edge from µi ≤
τi to µj ≤ τj in G. Then τi and µj share at least one
variable in common. Thus, by the disjointness of the
Vi’s µi ≤ τi and µj ≤ τj must be in adjacent columns,
say µi ≤ τi is in column k and µj ≤ τj is in column k+1
(so that the variables in τi and µj are in the set Vk).
Hence the edge points from an inequality in column k to
one in column k+ 1. (Since all edges point from a given
column to the one immediately following it, it follows
immediately that G is acyclic.) Now, let µ1 ≤ τ1 and
µ2 ≤ τ2 be inequalities in Γ, i.e., edges in G, in columns
k1 and k2, respectively, and suppose π : µ1 ≤ τ1 →∗U
µ2 ≤ τ2 in G. We prove by induction on ||π|| that |π| =
k2 − k1. If ||π|| = 0, then the two vertices coincide, and
the result is immediate. Otherwise, we can decompose
π into a directed (though possibly reversed) path π1

followed by an undirected path π2 via a vertex µ3 ≤
τ3, in column k3. Since every edge joins consecutive
columns, |π1| must be precisely k3 − k1. By induction,
we claim that |π2| = k2 − k3. Thus |π| = k2 − k1,
independently of our choice of path. Hence, for any
pair of vertices in G, all undirected paths joining them
have the same signed length. (Note that this implies
that all directed paths joining two given vertices also
have the same length.) Now, choose i, j ∈ {1, 2}. By the
pairwise disjointness of V0, . . . , Vm, all inequalities τ11 ≤
τ12 such that α1 ∈ Vars(τ1i) are in some column k, and
all inequalities τ21 ≤ τ22 such that α2 ∈ Vars(τ2j) are
in some column k′. Hence all undirected paths joining
such vertices must be of signed length precisely k − k′.
This establishes the forward direction.

For the reverse direction, we begin with an acyclic di-
graph G satisfying our hypotheses, and arrange the in-
equalities into columns as follows:

• for each connected component of G:



– label any vertex v with any integer c

– while there are unlabelled vertices:

∗ choose a labelled vertex w, with label lw
∗ for all unlabelled vertices w′ such that
w → w′, label w′ with label lw + 1

∗ for all unlabelled vertices w′ such that
w′ → w, label w′ with label lw − 1

• while possible:

– let G1 and G2 be connected components of
G, such that there are vertices v1 ∈ G1, v2 ∈
G2, with respective labels l1 and l2, such that
Vars(v1) ∩Vars(v2) 6= ∅

– subtract l2 − l1 from all labels in G2

– create a new vertex v3, with no variables and
label l1 + 1, and edges from v1 to v3, and
from v2 to v3, so that G1 and G2 are now
connected

• let l0 be the smallest label in G and subtract l0
from all labels in G

• erase all edges and vertices added to G in the sec-
ond loop above; each vertex’s label is its column

The following observation is immediate: if there is an
assignment of the inequalities into columns, such that
the Vi’s are disjoint, then this algorithm will find it—
every choice of label it makes is forced upon it by the
edges of the graph, which constrain the possible column
assignments. What we must show is that there is always
such an assignment. In particular, after the algorithm is
finished, if we form the Vi’s, will these sets be pairwise
disjoint?

First note that the edges of G actually used by the algo-
rithm in assigning labels induce a spanning tree on each
connected component of G. So between any two vertices
v1 and v2 (labelled l1 and l2, respectively) within a con-
nected component of G, there is a unique path along
the spanning tree that joins them. Moreover the signed
length of the path from v1 to v2 along the spanning tree
is l2 − l1 (easy induction on path lengths).

Let each vertex’s label be its column and form the sets
V0, . . . , Vm. Suppose there are sets Vi and Vj with a vari-
able φ such that φ ∈ Vi ∩ Vj . We first assume that the
two corresponding occurrences of φ lie within the same
connected component of G. Then there are four cases,
depending on whether φ is found on the left-hand sides
or the right-hand sides of the inequalities involved. We
consider one case in detail here—there are inequalities
τ1 ≤ µ1 and τ2 ≤ µ2, in columns i and j, respectively,
such that φ ∈ Vars(µ1) ∩ Vars(µ2). The signed path
length between these two vertices is j − i. By hypothe-
sis, all paths between two inequalities having φ on the
right-hand side must then have this signed length. Con-
sider now the distance from the vertex τ1 ≤ µ1 to itself.
It must also have value i − j, by hypothesis on G, but
of course the distance from a vertex to itself is 0. Hence

i − j = 0, from which we obtain i = j. The remaining
three cases are similarly easy.

We now suppose that τ1 ≤ µ1 and τ2 ≤ µ2 lie in different
connected components of G, so that there is no path
joining them. There are then two possibilities:

• τ1 ≤ µ1 and τ2 ≤ µ2 were the vertices considered
in the second part of the algorithm—then they
were assigned the same label; hence i = j.

• otherwise two vertices v1 and v2, with a variable
ψ in common, were used by the algorithm to tem-
porarily join the connected components. Say v1

and τ1 ≤ µ1 are in the same connected compo-
nent, as are v2 and τ2 ≤ µ2. By hypothesis on G,
the signed path length from v1 to τ1 ≤ µ1 is equal
to the signed path length from v2 to τ2 ≤ µ2. Since
the algorithm assigns v1 and v2 the same column,
it follows again that i = j.

Looking again at the example SUP instance illustrated
in Figure 2, we see that, for example, all undirected
paths from α ≤ f(β, γ) to g(δ) ≤ θ have signed length
equal to 2. More generally, all undirected paths from a
vertex with, say, β on the right-hand side to a vertex
with δ on the left-hand side have signed length equal
to 2. Similarly, all undirected paths from a vertex with
η on the left-hand side to a vertex with γ on the left-
hand side have signed length equal to 0. Analogous
properties hold for all pairs of variables, and therefore
the SUP instance illustrated in Figure 2 is acyclic.

A few characteristics of the formulation of acyclicity
given in Theorem 2 are worth noting. First, the disjoint-
ness of the sets V0, . . . , Vm is modelled by a condition
requiring constancy of path lengths. Second, although
the constants mentioned in the four conditions are, of
course, related to one another, we still need all four
conditions—this is because a given variable might occur
only on left-hand sides, or only on right-hand sides. In
these cases, not all four constants may exist for a given
choice of α1 and α2. Finally, although any directed
graph satisfying the conditions of the theorem must be
acyclic, there is no direct notion of acyclicity mentioned
in the theorem. In Section 6, we generalize the condi-
tion for acyclicity, while maintaining decidability. The
new condition clearly has an acyclic flavour.

6. R-ACYCLICITY
We now define an acyclicity criterion for the graph G
corresponding to a SUP instance Γ. We call this crite-
rion R-acyclicity ; we show that R-acyclicity is sufficient
to guarantee termination of the redex algorithm, and is
more general than the original, column-based criterion.

Definition 13 (R-acyclic). For a graph G of a
SUP instance Γ = {τi ≤ µi}Ni=1, define relations R,



- - -...
τ1 ≤ µ1(α) τ2 ≤ µ2(β)

� � �...
τ4 ≤ µ4(γ) τ3 ≤ µ3(β)

� � �...
τ6 ≤ µ6(α) τ5 ≤ µ5(γ)

Figure 3: The relation R and R-acyclicity. The no-

tation µ(α) denotes an expression µ in which α occurs

as a subexpression. Here, αRβ—indeed, αR′β. Since

also βRγRα, we have βR+α; therefore, this graph is

not R-acyclic.

R′ on variables in G as follows: αRβ (resp. αR′β) if
there exist vertices vi and vj with α ∈ RVars(vi), β ∈
RVars(vj), and vi →∗ vj (resp. vi →+ vj). G is said to
be R-acyclic if whenever αiR

′αj, we have ¬(αjR
+αi),

where R+ is the transitive closure of the relation R.

The “R” in R-acyclic refers, of course, to the relation R
in Definition 13. However, it also highlights the asym-
metry in the definition between RVars and LVars—in
particular, that we impose conditions on RVars, but not
on LVars. Hence, “R-acyclic” may be read as “right-
acyclic”.

Although the statement of R-acyclicity is somewhat in-
volved, R-acyclicity is not itself difficult to understand.
For illustrative purposes, Figure 3 depicts a graph that
is not R-acyclic. Note that R-acyclicity implies graph
acyclicity in the ordinary sense.

We wish to show that the redex procedure will termi-
nate on R-acyclic instances. Our proof hinges on the
observation that redex reduction preserves R-acyclicity:

Theorem 3 (Invariance of R-acyclicity). Let
Γ be a SUP instance, and Γ′ be a SUP instance obtained
by reducing a redex in Γ. If G(Γ) is R-acyclic, then so
is G(Γ′).

Proof. Suppose a redex-I is reduced in Γ. Then all
occurrences of some variable α are replaced with some
expression τ , containing only fresh variables. Hence all
vertices that contained α now contain the variables (if
any) of τ , and no other vertices contain these variables
because they are all fresh—therefore no edges are cre-
ated by this reduction. Hence, no R-cycles can be cre-
ated, and G remains R-acyclic.

Suppose now that a redex-II is reduced in Γ. If reduc-
tion causes G to lose R-acyclicity, then there are two
possibilities:

• there is a variable replacement [τ/α] that occurs
during reduction, which induces, for some β1, . . . βn,
the relations β1R · · ·Rβn, and such that βnR

′β1.
Since [τ/α] caused the violation, it created an edge

that completed one of the paths from βi to β(i mod n)+1.
For such an i, there is an edge from some vj → vk
lying along this path, that was created by the
substitution [τ/α]. Hence, one of RVars(vj) and
LVars(vk) contains the variable α; the other con-
tains a variable from τ , say γ. Now, for the redex
[τ/α] to exist, there must exist an inequality vh
that satisfies the conditions for this redex-II; hence
α and τ are both in RVars(vh). Since one of α and
γ is in LVars(vk), we have vh → vk. Since either
α or γ is in RVars(vj), and both are in RVars(vh),
the transitive closure of R connects the path end-
ing with vj to the path beginning with vh, and fol-
lowed by vk. Hence, the removal of the edge from
vj to τk ≤ µk does not restore R-acyclicity. Thus,
removing edges introduced by redex-II reductions
cannot convert graphs that are not R-acyclic to
graphs that are.

• we had βiR · · ·Rβj and βkR · · ·Rβl, for some βi,
βj , βk, and βl, and the redex reduction unifies βj
and βk, thus linking the two R-chains. In this
case, if a redex-II reduction unifies βj and βk,
then thse two variables must occur together on
the right-hand side of some inequality (the one in
which the redex occurs). Hence βjRβk, and we
already had βiR · · ·RβjRβkR · · ·Rβl, i.e., the two
R-chains were already linked. Again, the redex-II
reduction can only result in a non-R-acyclic in-
stance if the instance was non-R-acyclic to begin
with.

In both cases, we see that redex-II reduction cannot
reduce a graph that is R-acyclic to one that is not.
In summary, then, the redex procedure preserves R-
acyclicity.

Corollary 1. Let α and β be variables in an R-
ASUP instance Γ, with αR′β. Then no reduction σ of
Γ will produce (βσ)R(ασ).

Proof. Consider the instance

Γ′ := Γ ∪ {x1 ≤ f(α, x2), x2 ≤ β} ,

where f is a binary functor, and x1 and x2 are fresh
variables. Then this extra inequality gives us αR′β,
which we already had, and x2R

′β, which is of no conse-
quence because x2 does not occur anywhere else. There-
fore, this instance is R-acyclic iff Γ is. If Γ reduces
such that we obtain (βσ)R(ασ), then in Γ′, we have
(ασ)R′(βσ)R(ασ) (because no reduction is going to af-
fect the two extra inequalities). Hence Γ′ is non-R-
acyclic. But this contradicts the invariance ofR-acyclicity.
Therefore, Γ cannot reduce so as to produce (βσ)R(ασ).

Note that this argument presumes the existence of at
least one binary functor, f . But without a binary func-
tor, there can be no redex-II’s, and redex-I reduction
cannot create edges. Thus, the result follows either
way.



Corollary 2. Let v1 and v2 be vertices in the graph
of an R-ASUP instance Γ, such that v1 precedes v2 in
the partial order induced by the graph. Suppose that af-
ter k iterations of the redex procedure (i.e., after reduc-
tion of k redices), Γ reduces to an instance Γk. Let σk
be the substitution that converts Γ to Γk (i.e., σk is the
accumulated substitution encapsulating the k redex re-
ductions). Then v2σk cannot precede v1σk in the graph
of Γk.

Proof. Let v1 = τ1 ≤ µ1, v2 = τ2 ≤ µ2. Let α ∈
Vars(µ1), β ∈ Vars(µ2). If v1 precedes v2 in the partial
order induced by the graph, then we have αR′β. If,
after reduction, the graph has v2 preceding v1, then we
would have βR′α, contradicting the previous claim.

This argument presumes that µ1 and µ2 each contain at
least one variable. We know that µ1 must contain a vari-
able; otherwise v1 could not precede anything (it would
have no out-edges). Further if µ2 had no variables, then
no reduction could make v2 precede anything. Hence,
the case where either inequality contains no variables
on the right-hand side poses no difficulty.

The following result, establishing the solvability, via the
redex procedure, of singleton instances of SUP, will ul-
timately form the base case of our main result:

Lemma 1. Every instance of SUP comprising a sin-
gle inequality τ ≤ µ, with Vars(τ) ∩ Vars(µ) = ∅, is
solvable by the redex algorithm (that is, the redex algo-
rithm will terminate on such an input).

Proof. We bound the number of redex reductions
that can be performed in τ ≤ µ:

• The number of redex-I reductions in τ ≤ µ is
bounded by the number of leaf nodes in τ (i.e.,
by the number of variable occurrences in τ). Ev-
ery redex-I reduction causes at least one variable
α in τ to be matched against a variable in µ. No
further reduction will ever again cause this occur-
rence of α to be part of a redex-I. Hence there can
be no more redex-I’s than leaves in τ . (Note that,
because Vars(τ) ∩ Vars(µ) = ∅, redex reduction
does not change τ .)

• The number of redex-II reductions that can occur
in τ ≤ µ before a redex-I reduction must occur is
bounded by |Vars(µ)|. This is because each redex-
II reduction replaces at least one variable in µ;
hence it decreases |Vars(µ)| by at least 1.

Since the number of redex-II reductions that can occur
between redex-I reductions is bounded, and the total
number of redex-I reductions is bounded, the redex al-
gorithm must eventually terminate.

We now prove the main result. The inductive step of the
proof relies on the fact that every directed acyclic graph
G creates a partial order vG on its vertices, defined
such that v1 vG v2 if there is a directed path from
v1 to v2. The minimal elements in vG are the source
vertices, and the maximal elements are the sink vertices.
Further, every directed acyclic graph has at least one
source vertex and at least one sink vertex. Hence also,
the relation vG has at least one minimal element and
at least one maximal element.

This theorem drives the induction in the main result,
which we present below:

Theorem 4 (Termination for R-ASUP). Let Γ
be an instance of SUP and G = G(Γ). If G is R-acyclic,
then the redex algorithm will terminate on Γ.

Proof. For each i, let Γi be the result of performing
i reductions on the instance Γ, according to the redex
procedure, and let Gi = G(Γi). With each Gi is as-
sociated a partial order vGi , induced by its edges, as
described above. By Corollary 2 of Theorem 3, if, for
vertices vx and vy, we have vx vGi vy for some i, then
there is no j such that vy vGj vx. Therefore the union
of all of the partial orders, namely,

v:=
⋃
i

vGi ,

is a partial order, respecting all of the partial orders as-
sociated with all reduced intances Γi. Let ≤ be any total
order of the vertices of Γ consistent with v, and number
the vertices in Γ according to this order. Then any re-
duction of a redex in a vertex vi can only induce redices
in vertices vj for i ≤ j. For each vertex vi let ni be the
maximum number of redices that can be reduced in vi
before it (considered in isolation) is solved (this number
is finite, by Lemma 1). We then proceed by induction on
the ordinal (n1, . . . , nN ), under lexicographic ordering,
which is a well-ordering of the N -tuple. Since reduction
of a redex in any vi reduces ni, and can only increase
nj for j > i, and since the instance is solved when the
ordinal is (0, . . . , 0), the result follows by induction.

Corollary 3. The set of SUP instances that have
R-acyclic graphs forms a decidable subset of SUP.

Definition 14 (R-ASUP). R-ASUP is the restric-
tion of SUP to R-acyclic problem instances.

The previous theorem establishes R-ASUP as a decid-
able subset of SUP, and moreover, one for which the
redex procedure is a full solution procedure (that is, it
is guaranteed to terminate on instances with no solu-
tion). It remains to establish the relationship between
R-ASUP and the original ASUP.



Theorem 5. R-ASUP is a strict superset of ASUP.

Proof. For variables α and β, if αR′β (where R′

is as given in Definition 13), then α’s column assign-
ment is strictly smaller than β’s. If also βR+α, then β’s
column assignment would be less than or equal to α’s,
which is a contradiction. Hence ¬(βR+α), and therefore
any instance that satisfies the column-based definition
of acyclicity is R-acyclic. On the other hand, consider
any instance containing the following inequalities:

α ≤ β

β ≤ γ

α ≤ γ

This instance does not satisfy the column-based crite-
rion for acyclicity—for suppose that α ∈ Vi. Then by
the second inequality, γ ∈ Vi+2, but by the third in-
equality, γ ∈ Vi+1. On the other hand, it is easy to see
that these inequalities are R-acyclic. Hence, indeed, R-
acyclicity is strictly more general than the column-based
criterion.

7. VARIABLE ACYCLICITY
The SUP instance used in the proof of the preceding
theorem suggests a simpler graph-based formulation and
acyclicity condition, which we might call variable acyclic-
ity. In particular, we form a graph whose vertices are
the variables of the instance, and for variables α and
β, we have α → β iff there is an inequality τ ≤ µ with
α ∈ Vars(τ) and β ∈ Vars(µ). Then an instance is called
variable acyclic if the resulting graph, formed in this
way, is an acyclic graph. Such an acyclic graph yields
a partial ordering on the variables in the instance, and
strongly suggests that if the instance is solved accord-
ing to a strategy in which variables are substituted in an
order respecting this partial order, then the redex pro-
cedure will terminate. For example, if we replace each
“≤” in {α ≤ β, β ≤ γ, α ≤ γ} with an edge pointing
to the right, and group all occurrences of the same vari-
able together as a single vertex, then we obtain a simple
acyclic graph, and indeed, the instance is a terminating
SUP instance.

It turns out, however, that this intuition is false in gen-
eral. It is possible to construct terminating SUP in-
stances with cyclic variable graphs (for example, {α ≤
β, β ≤ α}); more importantly, it is possible to con-
struct non-terminating SUP instances with acyclic vari-
able graphs. Consider, for example, the following in-
stance:

f(α, α) ≤ f(β, f(γ, γ))

β ≤ γ ,

where f is a binary functor. The variable acyclicity
graph of this instance is presented in Figure 4—note
that it is acyclic. Interestingly, the graph is identical to
that of the instance {α ≤ β, β ≤ γ, α ≤ γ} mentioned
above. Applying the redex procedure to the instance,
we see that there is a redex-II in the first inequality
mapping β to f(γ, γ). As a result, the second inequality

α

β

γr
@
@
@
@
@
@R

-

r���
�
�
��
r

Figure 4: Variable acyclicity graph of the in-
stance {f(α, α) ≤ f(β, f(γ, γ)), β ≤ γ}.

f(α, α) ≤ f(β, f(γ, γ)) β ≤ γr -r
Figure 5: R-acyclicity graph of the instance
{f(α, α) ≤ f(β, f(γ, γ)), β ≤ γ}.

becomes f(γ, γ) ≤ γ, which then produces an infinite
sequence of redex-I’s.

On the other hand, from the perspective of R-acyclicity,
the instance has the graph presented in Figure 5. We
now see that βR′γ because there is a path of length 1
(the only nonempty path in the graph, as it happens) in
which β occurs on the right-hand side at the beginning
and γ occurs on the right-hand side at the end. But
we also have γRβ because there is a path of length 0
(namely, the first inequality) in which γ occurs on the
right-hand side at the beginning and β occurs on the
right-hand side at the end (for a path of length 0, this
simply means that they co-occur on a right-hand side).
Since βR′γRβ, the graph is not R-acyclic and we reject
the instance.

As this case study hopefully illustrates, SUP is decep-
tively subtle and intuition often goes awry when at-
tempting to reason about it. Indeed, the authors went
through several iterations of incorrect candidate invari-
ants for the redex procedure before settling upon R-
acyclicity. The fact that SUP had long been thought
decidable is further evidence of the subtle nature of the
problem.

8. A MOTIVATING APPLICATION
Although we present R-ASUP as a problem of general
interest with varied application domains, our interest in
R-ASUP arose from a study of ASUP within the realm
of polymorphic type inference algorithms. Here, a ty-
pability procedure for terms in the rank 2 fragment of
System F is phrased in terms of a reduction to ASUP
[13]. However, the reduction is somewhat unnatural.
Consider a term of the form

λx1. · · · .λxm.(λy1.(· · · (λyn.Mn+1)Mn) · · · )M1 ,

where variables are assumed to be named distinctly, and
no Mk contains a λ-abstraction paired with an argu-



ment. The translation to ASUP of this term introduces

• one variable for each subexpression of each Mk;

• one variable for each (xi,Mk) pair;

• one variable for each (yj ,Mk) pair for k > j;

• one variable for each (wl,Mk) pair, where wl is a
free variable;

• one variable for each bound variable z not men-
tioned above.

Many of these variables are introduced only in associa-
tion with trivial single-variable inequalities (i.e., of the
form α ≤ β), in order to make the column assignments
of the inequalities conform to the requirements of ASUP.

By working within R-ASUP rather ASUP, we are able
to produce an equivalent translation [15] that uses only

• one variable for each subexpression of each Mk;

• one variable for each xi;

• one variable for each yj ;

• one variable for each wl, where wl is a free variable;

• one variable for each bound variable z not men-
tioned above.

In other words, ourR-ASUP-based translation uses quadrat-
ically fewer variables, introduces quadratically fewer in-
equalities, and is a more natural reflection of the original
term—this second aspect of R-ASUP aided the authors’
own understanding of the application domain; by facil-
itating a more natural and elegant translation to SUP,
R-ASUP facilitates learning and aids reasoning about
the application. We expect that effects similar to this
may arise in other application domains as well.

9. RELATED WORK
Over the years, there have been several unsuccessful at-
tempts to give a full solution procedure for SUP, many
of which have yielded decidable subsets of varying com-
plexity. We outline some of these here.

Henglein [5, 6, 7] did pioneering work on semiunifica-
tion, establishing links between SUP and the type sys-
tems of languages like the Milner-Mycroft calculus [17].
As part of his work, he provided a solution procedure
for the linear semiunification problem, in which all func-
tors have arity one, and conjectured general solvability.
Under the assumption that all functors are unary, an
instance can have no redex-II’s, and therefore ordinary
graph acyclicity (rather than R-acyclicity) is sufficient
to guarantee termination of the redex procedure.

Baaz [1] gave a semi-procedure for general SUP prob-
lems that is based on a reduction to ordinary unifica-
tion. Baaz’s algorithm is less direct than the redex pro-
cedure, relying on variable renamings and appeals to
unification, rather than performing any explicit term
substitutions. A study of the behaviour of Baaz’s algo-
rithm on instances of R-ASUP is beyond the scope of
this work.

Kapur et al [9] showed that SUP is decidable in polyno-
mial time when restricted to instances containing a sin-
gle inequality (this is called uniform semiunification).
Oliart and Snyder [18] give a solution procedure that
runs inO(n2α(n)2) time in general, O(n2 log2(nα(n))α(n)2)
time if principal unifiers are required, where α is the
inverse Ackermann function. In the case of a single
inequality, the only possible non-zero path in the in-
stance’s graph is a self-loop, which only arises if a vari-
able occurs on both sides of the lone inequality. Since
a self-loop is a cycle, both ASUP and R-ASUP prohibit
this possibility. SUP is known to be undecidable as soon
as the number of inequalities in the instance is at least
2 [9, 11, 20].

Left-linear semiunification restricts the problem instance
such that within each left-hand side, no variable oc-
curs more than once. Left-linear semiunification was
introduced and shown decidable by Kfoury, Tiuryn, and
Urzyczyn [10]. Henglein [8] gives a cubic time solution
procedure. A left-linear instance cannot contain redex-
II’s, and therefore, as with linear semiunification, ordi-
nary graph acylicity suffices to guarantee termination.

Leiss [14] showed that semiunification is decidable when
restricted to two variables. Strictly speaking, this sub-
set, like the others presented in this section, is neither a
superset nor a subset of R-ASUP; nevertheless, it seems
clear that R-ASUP is the largest and most significant
decidable subset of SUP among all of these.

10. CONCLUSION
This paper extends the class of known solvable instances
of SUP by replacing the column-based formulation of
acyclicity by R-acyclicity. R-acyclicity enjoys several
advantages over the original formulation:

• it eliminates the need for constancy of path lengths
in an intance’s graph;

• it replaces four conditions with a single condition,
by eliminating explicit consideration of variables
on the left-hand side;

• the relationship between R-acyclicity and the re-
lation R clearly shows the acyclic character of this
subset of SUP; the notion of acyclicity is not as
apparent in the column-based formulation;

• by relaxing several of the conditions originally im-
posed on SUP instances, we have a simpler, more
natural restriction on SUP that is more widely ap-
plicable than the original formulation of acycliciy;



hence the class of known solvable instances of SUP
is now increased.

R-ASUP has proved to be of value in the application
domain in which its predecessor, ASUP, was formulated.
As we observed in Section 8, R-ASUP is a more natural
fit than ASUP in this domain, leading to a more concise
translation from typability instances to SUP. In other
domains that make use of subsets of SUP, R-ASUP may
prove to be of similar benefit.

11. REFERENCES
[1] Matthias Baaz. Note on the existence of most

general unifiers. Arithmetic, Proof Theory, and
Logical Complexity, pages 20–29, 1993.

[2] Pascal Brisset. Avoiding dynamic type checking in
a polymorphic logic programming language. In
Symposium on Logic Programming, page 674,
1994.

[3] Jochen Dörre and William C. Rounds. On
subsumption and semiunification in feature
algebras. Journal of Symbolic Computation,
13:441–461, 1992.

[4] Manuel Fähndrich, Jakob Rehof, and Manuvir
Das. Scalable context-sensidive flow analysis using
instantiation constraints. In ACM SIGPLAN
conference on Programming Language Design and
Implementation, pages 253–263. ACM Press, 2000.

[5] Friedrich Henglein. Polymorphic Type Inference
and Semi-Unification. PhD thesis, Rutgers, New
Brunswick, New Jersey, May 1989.

[6] Fritz Henglein. Semi-unification. Technical Report
(SETL Newsletter) 223, New York University,
April 1988.

[7] Fritz Henglein. Type inference and
semi-unification. In Proceedings of the 1988 ACM
conference on LISP and functional programming,
pages 184–197. Association for Computing
Machinery, ACM Press, 1988.

[8] Fritz Henglein. Fast left-linear semi-unification. In
ICCI’90: Proceedings of the international
conference on Advances in computing and
information, pages 82–91, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

[9] D. Kapur, D. Musser, P. Narendran, and
J. Stillman. Semi-unification. In Proceedings of the
8th Conference on Foundations of Software
Technology and Theoretical Computer Science,
volume 338 of LNCS, pages 435–454, Berlin/New
York, 1988. Springer-Verlag.

[10] A. Kfoury, J. Tiuryn, and P. Urzyczyn.
Computational consequences and partial solutions
of a generalized unification problem. In
Proceedings of the 4th IEEE Symposium on Logic
in Computer Science (LICS), jun 1989.

[11] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The
undecidability of the semi-unification problem.
Information and Computation, 102:83–101, 1993.

[12] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An
analysis of ML typability. Journal of the

Association for Computing Machinery,
41(2):368–398, March 1994.

[13] A. J. Kfoury and J. B. Wells. A direct algorithm
for type inference in the rank-2 fragment of the
second-order λ-calculus. In 1994 ACM Conference
on LISP and Functional Programming, pages
196–207. ACM Press, 1994.

[14] H. Leiss. Decidability of semi-unification in two
variables. Technical Report INF-2-ASE-9-89,
Siemens, Munich, 1989.

[15] B. Lushman and G. V. Cormack. A more direct
algorithm for type inference in the rank-2
fragment of the second-order λ-calculus. Technical
Report CS-2006-08, U. of Waterloo, 2006.
Available at
http://www.cs.uwaterloo.ca/research/tr/2006/CS-
2006-08.pdf.

[16] A. Martelli and U. Montanari. An efficient
unification algorithm. ACM Transactions on
Programming Languages and Systems, 4:258–282,
1982.

[17] A. Mycroft. Polymorphic type schemes and
recursive definitions. In Paul and Robinet, editors,
International Symposium on Programming, pages
217–228, 1984.

[18] Alberto Oliart and Wayne Snyder. A fast
algorithm for uniform semi-unification. In 15th
Conference on Automated Deduction (CADE-15),
number 1421 in LNAI. Springer-Verlag, 1998.

[19] M. Paterson and M. Wegman. Linear unification.
J. Computer and System Sciences, 16:158–167,
1978.

[20] P. Pudlak. On a unification problem related to
Kreisel’s conjecture. Commentationes
Mathematicae Universitatis Carolinae,
29(3):551–556, 1988.

[21] J. A. Robinson. A machine-oriented logic based
on the resolution principle. J. ACM, 12(1):23–41,
1965.

[22] J. B. Wells. Typability and type checking in
System F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1–3):111–156, 1999.


