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ABSTRACT
We show that a set of independently developed spam filters
may be combined in simple ways to provide substantially
better filtering than any of the individual filters. The re-
sults of fifty-three spam filters evaluated at the TREC 2005
Spam Track were combined post-hoc so as to simulate the
parallel on-line operation of the filters. The combined re-
sults were evaluated using the TREC methodology, yielding
more than a factor of two improvement over the best filter.
The simplest method – averaging the binary classifications
returned by the individual filters – yields a remarkably good
result. A new method – averaging log-odds estimates based
on the scores returned by the individual filters – yields a
somewhat better result, and provides input to SVM- and
logistic-regression-based stacking methods. The stacking
methods appear to provide further improvement, but only
for very large corpora. Of the stacking methods, logistic re-
gression yields the better result. Finally, we show that it is
possible to select a priori small subsets of the filters that,
when combined, still outperform the best individual filter
by a substantial margin.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]:information filtering

General Terms: Experimentation, Measurement

Keywords: spam, email, filtering, classification

1. INTRODUCTION
We investigate methods of spam filter fusion – combin-

ing the output from separate filters to form a better result.
Fusion methods, under a variety of names [12], have been
found to achieve varying degrees of benefit for classifica-
tion and ranked information retrieval applications. Our test
setup is different from what is commonly used to evaluate
classifiers and information retrieval systems. The input is
real email, large-scale, and presented to the filter in chrono-
logical order. There is no explicit training set; learning takes
place on-line. The filter must return a score as well as a bi-
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nary classification for each message in turn, after which it is
informed of the true classification.

Prior to TREC 2005 [26], we conducted pilot tests us-
ing the TREC Spam Filter Evaluation Tool Kit [19], eight
open-source filters, and two email corpora containing 55,120
messages in total. These tests supported the primary hy-
pothesis – that näıve fusion improves on the best base filter.
The pilot tests also indicated by exhaustive enumeration
that subset selection or different score-combining methods
might provide further benefit.

After TREC 2005, we conducted tests using the output
from fifty-three spam filters run on four corpora within the
context of the TREC 2005 Spam Evaluation Track [7]. The
fifty-three filters were developed by seventeen independent
organizations; the four corpora, totaling 318,482 messages,
were derived from independent sources. The principal ob-
jective of these tests was to test the primary hypothesis; a
secondary objective was to examine the effectiveness of new
fusion and subset selection methods.

2. BACKGROUND AND RELATED WORK
We address the problem of on-line content-based spam fil-

tering, an adaptive binary text classification problem[6, 23].
A stream of incoming email messages is presented to the fil-
ter, which must label each as spam or ham (not spam). The
filter’s effectiveness (ineffectiveness) is measured by the pro-
portion of spam and the proportion of ham that it correctly
(incorrectly) classifies. As it is difficult to quantify the rel-
ative cost of spam and ham misclassification errors, filters
typically expose to the user a threshold parameter that may
be adjusted to improve one at the expense of the other [18].

Text classification has been studied within the context
of information retrieval and machine learning. Spam filter-
ing in particular has been addressed within these contexts;
however, the TREC 2005 Spam Evaluation Track provides
the first standard test corpora and evaluation tools, and
abstracts the problem differently from previously reported
efforts. Spam filtering has been the subject of much prac-
tical interest; currently, hundreds of commercial and free
filters are available. Many rely on content-based classifica-
tion techniques; others use techniques that are beyond the
scope of this evaluation.

Combining the output from multiple tools has been re-
ported to improve information retrieval [20, 21, 2, 25] and
classification performance [4, 28, 17, 13, 15]. In informa-
tion retrieval, a primary concern has been the combination
of ranked lists of documents retrieved by different systems.
The combination of the results from differently structured



queries has also been investigated [3]. These techniques are
generally applied to a batch process in which entire ranked
lists are combined. The TREC spam filtering approach re-
sembles ranked retrieval in that the spamminess score re-
ported by the filter in effect ranks messages, but the ranking
is incremental as the scores must be determined one message
at a time, without knowledge of future messages.

Ensemble methods [9] have been the subject of much in-
vestigation for machine learning in general and for classi-
fication in particular. Bagging and boosting combine the
results of several weak classifiers, typically employing the
same algorithm over perturbed training sets or configuration
parameters. Stacking [27], in contrast, uses a meta-learning
technique to induce the best combination of stronger clas-
sifiers that employ distinct methods. In general, these in-
vestigations have employed a batch learning configuration
and have been evaluated based on their binary classification
effectiveness using separate training and test sets.

Neither näıve fusion nor stacking has been shown conclu-
sively to have substantial benefit in this application. Dze-
roski and Zenko state with respect to general text classifi-
cation, “Typically, much better performance is achieved by
stacking as opposed to voting,” and “Our empirical evalu-
ation of several recent stacking approaches shows they per-
form comparably to the best of the individual classifiers se-
lected by cross-validation, but not better.”[10] Hull et al.,
within the context of batch filtering, state, “We have found
that simple averaging of probabilities or log odds ratios gen-
erates a significantly better ranking of documents,” and “We
generated [meta] parameter estimates using both linear and
logistic regression but failed to reach the standard set by
the simple averaging strategies.”[13] Sakkis et al. stack
Näıve Bayes and k-nearest-neighbor (KNN) classifiers us-
ing a KNN meta-classifier over various parameter configura-
tions and observe that the best stacking configuration out-
performs the best individual classifier configurations by a
small margin: “The results presented here motivate further
work in the same direction. In particular, we are interested
in combining more classifiers [...] Finally, it would be inter-
esting to compare the performance of stacked generalization
to other multi-classifier methods [...] .”[22]

Segal et al. [24] employ a pipeline of purpose-built filters
to analyze various aspects of email messages. At the end of
the pipeline, if no filter has definitively classified the mes-
sage, the scores from all filters are combined using linear
coefficients computed by a non-linear optimizer, the combi-
nation showing improvement over the individual filters.

3. TREC SPAM FILTER EVALUATION

TREC 2005 Corpora
Ham Spam Total

Mr X 9038 40048 49086
S B 6231 775 7006
T M 150685 19516 170201
Full 39399 52790 92189

Aggregate 205253 113129 318482

Table 1: TREC Corpus Statistics

TREC, the Text Retrieval Conference, provides large test
collections, uniform scoring procedures, and an annual fo-
rum for comparing results for a number of information-
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Figure 1: TREC Filter Performance Distribution

retrieval applications. While TREC has previously exam-
ined batch and adaptive filtering, spam filter effectiveness
was first addressed in TREC 2005.

The TREC Spam Filter Evaluation Tool Kit, developed
for TREC 2005, provides a standardized method for running
and evaluating spam filters. Instead of specifying the rela-
tive cost of spam and ham errors, the toolkit requires the
filter to return a spamminess score that may be compared
to an external threshold to yield a binary classification. In
addition, the filter must return a binary classification based
on some internal threshold chosen by the filter implemen-
tor. Receiver Operating Characteristic (ROC) curves pro-
vide a mechanism for comparing filters over various possi-
ble threshold settings [11]. In addition, the area under the
curve (AUC or ROCA) provides a useful summary measure
of filter performance. Spam filters typically have extremely
low error rates - ROCA = 0.9999 is not uncommon; there-
fore the toolkit reports 1-ROCA (the area above the curve)
as a percentage. That is, ROCA = 0.9999 is reported as
(1-ROCA)% = .01. The toolkit also reports (also as per-
centages) spam misclassification proportion (sm%) at vari-
ous ham misclassification proportions (hm%). The toolkit
provides bootstrap-estimated 95% confidence limits for all
ROC measures (cf. [8]).

The toolkit invokes each filter using a command-line inter-
face that presents the messages one at a time to the filter.
After the filter returns a classification and score, the true
classification is communicated to the filter so that it may
learn from the message. The toolkit collects a result file
with one line per message containing the filter’s output and
the true classification. This result file is used as input to
the evaluation component of the toolkit, which computes
(among others) the following effectiveness indicators: ROC
curve, (1-ROCA)%, and sm% at hm% = 0.1.

Twelve independent groups participated in the TREC 2005
Spam Track. Each submitted up to four spam filters for eval-
uation. In addition, variants of five open-source filters were
adapted, in consultation with their authors, for evaluation.
In total, 53 filters authored by 17 organizations were eval-
uated1. The filters were developed entirely independently
from the test corpora and from the authors of this study;

1Several filters failed to run on some of the corpora and are
excluded from the results on those particular corpora; 46
filters ran successfully on all corpora.
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Figure 2: Pilot Fusion Filters vs. Base Filters
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Figure 3: Pilot Subset Selection

the filters were neither designed nor selected to be amenable
to fusion. We used the output from all TREC Spam Track
runs as the basis of our main fusion experiments.

Four separately-sourced corpora, ranging in size from 7006
to 170201 messages, were used for evaluation (see table 1).
For the purpose of meta-analysis, the results on the four
corpora were aggregated and the same summary measures
were computed on the aggregate.

Performance among the filters differed dramatically. For
example, figure 1, the distribution of (1-ROCA)% of the
TREC runs on the aggregate, shows three orders of magni-
tude difference between the best and the worst. Individual
corpus results show similar diversity.

Details of the TREC 2005 filters, corpora and results may
be found in the proceedings.[26]

4. PILOT EXPERIMENT
The pilot experiment investigated two näıve fusion meth-

ods – voting and normalized score averaging – using eight

open-source filters2 and two test corpora (n = 60343 ; n =
490864). We also investigated the potential impact of sub-
set selection by applying the techniques to all 255 non-empty
subsets of base filters.

Figure 2 shows superior ROC curves for the two fusion
methods, as compared to all of the base filters. But only
one curve, normalized score averaging on the larger corpus,
nets a significantly better (1-ROCA)% statistic (p < .02)
than the best base filter.

2Bogofilter [bogofilter.sourceforge.net],
CRM114 [crm114.sourceforge.net],
dbacl [dbacl.sourceforge.net],
DSPAM [dspam.sourceforge.net],
POPFile [popfile.sourceforge.net],
SpamAssassin (Bayes filter only) [spamassassin.apache.org],
SpamBayes [spambayes.sourceforge.net],
SpamProbe [spamprobe.sourceforge.net].
3SA Corpus [spamassassin.apache.org/publiccorpus].
4Mr X Corpus [plg.uwaterloo.ca/˜gvcormac/mrx].
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Figure 4: Fusion Filters vs. Best Filter

Figure 3 shows (1-ROCA)% for normalized averaging over
k-subsets of the base runs, as a function of k. The curves
labeled max, min, and mean are over the (1-ROCA%) scores
yielded by all subsets of size k. The curves labeled best and
worst are yielded by selecting post-hoc the base runs that,
taken individually, yield the k best and worst (1-ROCA)%
statistics. The x symbols on the 1-axis indicate (1-ROCA)%
for each of the base runs.

From the pilots we concluded that the näıve combination
methods were worthy of further validation. However, we
were uncomfortable with normalized averaging as a method
for combining scores, as it relies on unwarranted assump-
tions about the distribution of spamminess scores returned
by the base filters. We determined, therefore, to seek to
devise a method that relied only on the warranted assump-
tion that each filter would attempt to minimize (1-ROCA)%;
that is, to minimize the number of pairs of ham and spam
messages in which the ham message yielded the higher spam-
miness score.

From the k-subset analysis we found reason to hypothesize
that subsets of the base filters might be found a priori (as
opposed to a posteriori in the pilot) that would yield better
performance, or that would yield good performance with less
computational expense. And if subsets might be learned, so
might other linear and non-linear combinations of the scores.

5. FUSION EXPERIMENT
The primary purpose of our main experiment was to val-

idate the hypothesis that each of the following methods
would improve on the best of a collection of separate filters.
A secondary purpose was to assess the relative effectiveness
of the methods.

Best Filter. As a baseline for comparison, we selected (a
posteriori) the filter achieving the best ROC score on each
corpus.

Voting. Each base filter’s output consists of a binary
classification and a spamminess score. Vote fusion uses only
the binary classification output of the base filters. The fused
filter’s spamminess score for a message is the fraction of
base filters that classify it as spam – a number between 0
and 1. The fused filter’s binary classification is determined
relative to some arbitrary constant threshold 0 < t < 1; a
spam classification is returned when spamminess > t. The
summary statistics that we present are insensitive to our
choice of t = 0.5.

Log-odds averaging. When a filter reports a spammi-
ness score sn for the nth message, we estimate Ln, the odds
that the message is spam to be

Ln = log
| {i < n | si ≤ sn and ith message is spam} | + ǫ

| {i < n | si ≥ sn and ith message is ham} | + ǫ
.



Method (1 − ROCA)% sm%@hm% = .1
logistic .007*** (.005-.008) .73*** (.55-.98)
svm .008*** (.005-.013) .65*** (.55-.77)

logodds .009*** (.007-.011) .80*** (.65-.98)
vote .013* (.010-.018) 1.00*** (.82-1.21)
best .019 (.015-.023) 1.78 (1.42-2.22)

Method (1 − ROCA)% sm%@hm% = .1
logistic .010*** (.007-.014) 1.32* (.68-2.58)
logodds .011*** (.007-.016) 1.02** (.53-1.97)

svm .011*** (.007-.017) 1.48* (.73-2.98)
vote .014*** (.008-.024) 1.21** (.86-1.71)
best .045 (.032-.063) 3.90 (1.55-9.50)

Full Corpus Mr X Corpus

Method (1 − ROCA)% sm%@hm% = .1
vote .115** (.071-.184) 10.5 (6.75-15.8)
svm .155 (.046-.516) 6.71 (3.66-12.0)

logistic .166 (.057-.483) 5.55 (3.57-8.53)
logodds .193 (.076-.490) 11.0 (7.01-16.8)

best .231 (.142-.377) 11.2 (4.38-25.9)

Method (1 − ROCA)% sm%@hm% = .1
logistic .036*** (.030-.044) 3.89*** (3.43-4.41)
svm .055*** (.045-.067) 3.97*** (3.50-4.49)

logodds .061*** (.045-.067) 4.78*** (4.27-5.33)
vote .095** (.079-.115) 4.91*** (4.45-5.43)
best .135 (.111-.163) 10.3 (9.16-11.6)

S B Corpus T M Corpus

Method (1 − ROCA)% sm%@hm% = .1
logistic .012*** (.010-.015) 1.20*** (1.07-1.35)
svm .017*** (.015-.021) 1.29*** (1.16-1.45)

logodds .020*** (.017-.023) 1.78*** (1.64-1.93)
vote .028*** (.023-.033) 1.66*** (1.48-1.86)
best .051 (.044-.058) 3.78 (3.36-4.25)

Aggregate Results

improvement on best: *p < .05, **p < .005, ***p < .0005

Table 2: Fusion Summary Statistics

That is, we simply count the number of prior spam mes-
sages with a lower or equal score and the number of prior
non-spam messages with a higher or equal score, and take
the log of their ratio. The necessary counting can be done in
O(log n) time with a suitable data structure [5]. The fused
spamminess score is the arithmetic mean of the base filters’
Ln scores. We set t = 0.

SVM. Li scores were used as features and all prior mes-
sages were used as a training set. SVMlight’s [14] default
kernel and parameters were used. For efficiency reasons,
SVMlight was not run after every message; retraining was
effected at Fibonacci-like intervals.5 The SVMlight output
was used directly as the fused spamminess score. We set
t = 0.

Logistic regression. The LR-TRIRLS logistic regres-
sion package [16] was used to find weights such that the
weighted average of the base filters’ Li scores best predicted
the log-odds of the classification of prior messages. This
weighted average was used as the spamminess score, and we
set t = 0. Negative weights were assumed to represent over-
fitting; an iterative process was used to eliminate them. The
filter with the most negative weight was eliminated; regres-
sion and elimination were repeated until no negative weights
remained. For efficiency reasons, the weights were not re-
computed for every message. For the first 100 messages, the
weights were fixed at 1

f
, where f is the number of base filters.

Thereafter, they were recomputed after every nj messages
where n1, n2, n3, ... forms a Fibonacci-like series.6

5Increasing training set sizes were used to adapt SVM, a
batch method, to on-line classification [6]. We used training
set sizes of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000, 10000, 20000, 50000.
6We used increasing training set sizes of 0, 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000, 1100, 2100, 4100, 9100,

Figure 4 shows the ROC curves for the four fusion meth-
ods and the best filter for each of the four corpora. Table 2
shows the summary statistics for the same runs, with 95%
confidence limits and p-values. Each p-value indicates the
probability that the statistic’s improvement over that of the
best filter may be due to chance.

6. SUBSET EXPERIMENT
To select subsets of the base filters, we employed the same

elimination process as for logistic-regression stacking. After
eliminating the filters corresponding to negative weights, we
continued the process – eliminating the filter with the small-
est weight – until only k filters remained. These k filters
formed the base classifiers for a new fused filter. The re-
sulting filter combines k spamminess scores by multiplying
them by their respective weights as determined by the selec-
tion process. The subset experiment, unlike fusion, involved
a batch process – selection and the computation of weights
takes place with respect to a training corpus and the result-
ing filter is applied to a different test corpus.

To evaluate the subset selection method, we used two cor-
pora – Mr X and S B – as training corpora, and the other
two – Full and T M – as test corpora. For each test corpus
we computed subsets of size 2, 3, 4, 8, 16, ..., m where m is
the largest subset that yields all positive coefficients. Each
subset was used in a fusion run on the two test corpora.
Tables 3 and 4 show the results of these four sets of runs.
All subsets improve on the best run in both measures, sig-
nificantly so except for the smaller subsets trained on the
S B corpus. Performance improves with subset size; per-
formance of the larger subsets is comparable to that of the
better fusion methods.

19100, 39100, 69100, 99100, 129100, 159100.



Subset (1 − ROCA)% sm%@hm% = .1
mrx23 .007*** (.006-.009) .79*** (.62-.99)
mrx16 .007*** (.006-.009) .84*** (.69-1.02)
mrx8 .009*** (.007-.011) .88*** (.71-1.08)
mrx4 .012*** (.009-.015) 1.07*** (.82-1.39)
mrx3 .012*** (.010-.016) 1.15*** (.92-1.44)
mrx2 .016 (.012-.021) 1.31** (1.01-1.68)
best .019 (.015-.023) 1.78 (1.42-2.22)

Subset (1 − ROCA)% sm%@hm% = .1
mrx23 .047*** (.038-.057) 3.84*** (3.41-4.32)
mrx16 .050*** (.040-.062) 3.99*** (3.56-4.48)
mrx8 .055*** (.041-.072) 4.22*** (3.72-4.79)
mrx4 .084*** (.067-.105) 4.37*** (3.74-5.09)
mrx3 .081*** (.063-.104) 4.20*** (3.66-4.81)
mrx2 .094*** (.075-.118) 4.40*** (3.90-4.96)
best .135 (.111-.163) 10.3 (9.16-11.6)

Full Corpus T M Corpus

improvement on best: *p < .05, **p < .005, ***p < .0005

Table 3: Mr X-derived Subsets on Full and T M Corpora

Subset (1 − ROCA)% sm%@hm% = .1
sb14 .008*** (.007-.010) 1.01*** (.81-1.25)
sb8 .008*** (.007-.010) 1.02*** (.81-1.28)
sb4 .010*** (.008-.012) 1.40* (1.07-1.82)
sb3 .012*** (.010-.015) 1.45* (1.22-1.73)
sb2 .015*** (.012-.018) 1.51 (1.23-1.84)
best .019 (.015-.023) 1.78 (1.42-2.22)

Subset (1 − ROCA)% sm%@hm% = .1
sb14 .049*** (.041-.059) 5.50*** (4.83-6.27)
sb8 .053*** (.044-.063) 5.78*** (5.01-6.66)
sb4 .058*** (.048-.069) 6.09*** (5.21-7.11)
sb3 .074*** (.061-.089) 7.72*** (6.60-9.00)
sb2 .109** (.087-.136) 8.80*** (7.58-10.18)
best .135 (.111-.163) 10.3 (9.16-11.6)

Full Corpus T M Corpus

improvement on best: *p < .05, **p < .005, ***p < .0005

Table 4: S B-derived Subsets on Full and T M Corpora

7. ANALYSIS AND DISCUSSION
All fusion methods substantially outperformed the best

filter. The lack of significance of results with respect to the
S B corpus may be attributed to its size; 775 spam mes-
sages are insufficient to distinguish filters at the error rates
achieved. It may also be the case that some effects (notably
SVM and logistic-regression stacking) increase with corpus
size. Voting – simply counting the binary classification out-
puts of the filters – is remarkably effective, but appears to
yield somewhat less improvement than the other filters. On
the other hand, we have reason to believe that voting is
more stable, and may perform better on short corpora, or
on the first several thousand messages of long corpora. One
possible reason for this is that voting is better able to take
advantage of prior knowledge incorporated into the individ-
ual filters; until reliable estimates of the filters’ credibility
are obtained, simple voting seems to be the safest choice.
Nevertheless, given the diversity of performance among the
base filters, it is remarkable that a simple vote works so well.
Each filter no doubt incorporates several arbitrary parame-
ters set by its authors, not the least important of which is
t, the classification threshold. Thus, voting works well due
to social behaviour as much as any technical reason.

The log-odds transformation is an essential component of
the other techniques – the transformed scores were used di-
rectly and also as input to the SVM and logistic regression
meta-learning methods. In the pilot experiment we investi-
gated various linear and non-linear combinations of scores.
Although the sum of linear-normalized scores worked accept-
ably well in the pilot, we had no confidence that it would
combine well the diverse score distributions found in the
TREC runs. Indeed it did not, performing more poorly than
simple voting on the Mr X Corpus. Therefore we dropped it
from further consideration and did not test it on the other
corpora. Since we had used Mr X in the pilot (but with dif-

ferent filters) we used it for testing various parameters and
methods, testing only the ones that appeared promising –
the ones reported here – on the other corpora. In this sense
one may consider the Mr X results to be somewhat “cherry
picked” but not the results on the other corpora.

The rationale for the log-odds transformation is as fol-
lows. Given a threshold t, messages may be placed in two
dichotomous classes: spam messages with spamminess score
s ≤ t, and non-spam messages with s ≥ t. A new message
with spamminess t must necessarily fall into one of these
classes. We use the observed size of these classes as an es-
timate of the odds ratio. That is, the area of the tails of
the unnormalized score distributions provides a likelihood
ratio multiplied by the prior odds (i.e. the overall odds
ratio). We also experimented with using log-likelihood in-
stead of log-odds. Log-likelihood is computed by subtract-
ing log-prior-odds from log-odds; log-prior-odds is easily es-
timated from the observed spam to non-spam ratio. While
log-likelihood makes more “sense” from a probabilistic point
of view, it makes no difference to ROC or logistic regres-
sion results, and introduces slightly more noise due to the
(additional) instability of the log-prior-odds estimate. In
addition, we computed positive or negative log likelihood
ratios [1] (as appropriate) from the base filters’ binary clas-
sifications; preliminary testing revealed the average of these
works marginally better than voting, but not as well as the
average of the log-odds-transformed scores.

Three of the corpora showed better results for log-odds
averaging than for voting; two were significant in a 2-tailed
test (full, p < .0002; mrx, p < .2; tm, p < .0001), one
showed an inferior (sb, p < .16) result which we suggest is
largely due to chance, but may also be due to the small size
of the corpus offering insufficient numbers for accurate log-
odds estimates. The aggregate “run”, which is not a run at
all but an amalgam of the other four, shows that log-odds
averaging improves on voting (p < .0001).



The log-odds transformed scores were used as input fea-
tures to SVMlight. We also tried the untransformed scores
and the binary classifications as features, with deleterious
results. We also tried several combinations of kernels and
parameter settings, but found none that yielded better re-
sults. We do not claim to have the exhausted space of fea-
tures, kernels and settings. SVMlight, using default param-
eters, improves on voting on the same corpora as does log-
odds, and shows a significant improvement in the aggregate
(p < .0001). While SVM’s improvement over log-odds is sig-
nificant only for the aggregate run (p < .01), the consistent
improvement over the four corpora leads us to believe that
it is better.

We found that straightforward logistic regression yielded
poor performance, even with very large amounts of training
data. We observed, as did Hull [13] in a somewhat differ-
ent context, that negative coefficients were a near-certain
sign of over-fitting7. But logistic regression constrained to
non-negative results is intractable, so we used the simple
heuristic of deleting the filter with the most negative coeffi-
cient and repeating until no negative coefficients remained.
There is no reason to believe that this is the best approach.
For example, we could have used significance rather than
magnitude as an elimination criterion. But for efficiency
we chose a simplistic technique that appeared to work. We
leave it to future research to investigate more sophisticated
strategies.

Logistic regression performed the best on all corpora ex-
cept S. B.; significantly better than the other methods in
the aggregate (vote, p < .0001 ; logodds, p < .0001 ; svm,
p < .0001). S. B.’s discordant result is not significant and
may be due to chance. Examination of the ROC curve (fig-
ure 2) shows the logistic regression curve apparently superior
to the rest, yet the (1-ROCA)% statistic is inferior. Fur-
ther investigation, and verification of the ROC results with
SPSS, shows that an extreme point beyond the scale of the
graph accounts for the difference. We note also that sm%
at hm% = .1 shows logistic regression to be superior on the
S. B. corpus. While the difference may be due to chance, it
is also plausible that stacking methods are superior only on
larger corpora, where they have more opportunity to learn.

The stepwise elimination process embodied in the logistic
regression approach identifies a subset of the base filters that
contribute to the best fusion result. Continuing the elimi-
nation process yields smaller subsets which all outperform
the best filter; even the subsets of size 2 outperform the best
individual filter. Figure 5 indicates the number of distinct
Mr X-derived subsets in which each filter participates; the
filters are labelled and ordered by their individual perfor-
mances. We note that the best-performing filter is not a
member of any of the subsets – many strong filters are ex-
cluded in favour of weaker ones. The S B-derived subsets
show the same effect, from which we may infer that inter-
filter correlation is a determining factor in subset selection.

The cross-corpus design of the experiments serves to indi-
cate that a subset of filters chosen using one source of email
may be expected to yield a fused filter that works well on
another.

7We say near-certain because the process did in fact discover
some valid negative coefficients. Two of the base filters were
fusions of other filters, and the regression process yielded a
strong negative coefficient for components that were over-
represented.

Figure 5: Base Filter Participation in Subsets (by
Separate Performance)

8. CONCLUSIONS
The fusion methods presented here produce combined fil-

ters that outperform all other tested filters by a substantial
margin – more than a factor of two in the standard measures
of ROC area and spam misclassification at a 0.1% ham mis-
classification rate. As such, they are the best filters tested
to date on the TREC corpora.

The simplest method – voting based on the binary clas-
sifications yielded by the individual filters – yields an ROC
curve that is clearly superior to the best filter on each of
the corpora. Although voting works well, it lacks appeal be-
cause it relies on the arbitrarily-set classification thresholds
of the individual filters, and its sensitivity can be adjusted
only coarsely by specifying the number of filters that must
agree to classify a message as spam. The fifty-three differ-
ent threshold values afforded by this test were adequate to
achieve good ROC results, but we are skeptical as to whether
the approach would be practical for a smaller number of fil-
ters, unless one had the capability to adjust the individual
filters’ thresholds.

The score-based methods – log-odds averaging, SVM, and
logistic regression – are more appealing in that they use the
score and not the threshold setting from each individual fil-
ter. The score-based methods appear also to improve on
voting, but the incremental improvement is not nearly as
dramatic as that of voting over the best individual filter.
The ROC curves for these methods don’t clearly dominate
voting, and the statistics are superior by a significant mar-
gin on only the larger corpora. Of these methods, logistic
regression (with elimination of filters with negative coeffi-
cients) appears to yield the best performance. On the other
hand, log-odds averaging is the simplest of the score-based
methods, and the other methods take as input the log-odds
transformed scores. That is, the log-odds transformation is
the essential basis of all the score-based methods.

In practice, it may not be feasible to run 53 separate filters
on each incoming email message. Our experiments indicate
that it is possible to select a smaller number – roughly half
– without compromising performance. Smaller subsets –
perhaps only a handful of filters – compromise performance
only slightly. Furthermore, it appears that these subsets
may be picked a priori, based on a training corpus derived
from a distinct source of email.



These experiments may be repeated using the TREC pub-
lic corpus and the open-source filters supplied with the spam
evaluation toolkit. The 53 filters tested at TREC include
many of the best available filters at the time of writing, as
well as several experimental and less-well-performing filters.
We advance the hypothesis that as new filters are developed
and tested, they too will perform best in combination with
other independently-developed filters.
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